

Implicações da Norma de Desempenho em relação as estruturas de concreto

Eng. Enio Canavello Barbosa

ABNT NBR 15575: 2013

NBR 15575/2008 – Norma de Desempenho prorrogada

19 de outubro de 2010

Área Técnica, Construção Sustentável, Construindo Melhor, Normas, Sobre Cimento, Sobre Concreto, Sustentabilidade

Norma de Desempenho foi prorrogada e a ABNT agora chama para a consulta pública

Por: Michel Mello

A Associação Brasileira de Normas Técnicas – ABNT concordou em reativar a Comissão de Estudo que elaborou a norma de desempenho, **NBR 15575/2008** para estabelecer um novo prazo de vigência. As seis partes que compõem a norma receberam emendas, e por isso estão de volta ao processo de Consulta Nacional.

A NBR 15575/2008, **norma de desempenho térmico e acústico para edificações de até cinco pavimentos**, foi instituída pela **ABNT** e criada com o objetivo de melhorar o desempenho e o acabamento de materiais na construção civil. A razão para esta nova consulta são as muitas dúvidas geradas nas construtoras e os possíveis reflexos causados na **cadeia produtiva da construção**. Por isso a norma precisa de mais tempo para entrar em vigor, um período maior de análise e adequação das construtoras.

ABNT NBR 15575: 2013

1ª. Edição: 12 de maio de 2008Válida a partir de 12 de maio de 2010

4ª. Edição: 19 de fevereiro de 2013Válida a partir de 19 de julho de 2013381 páginas

Escopo: não se aplica a

- Obras já concluídas
- Obras em andamento até 19.07.13
- Projetos protocolados antes de 19.07.13
- Obras de reforma
- Retrofit de edifícios
- Edificações provisórias

ABNT NBR 15575: 2013

- Esclarecimento:
- Diretivas ABNT Parte 2 2007

Diretivas ABNT, Parte 2

Regras para a estrutura e redação de Documentos Técnicos ABNT

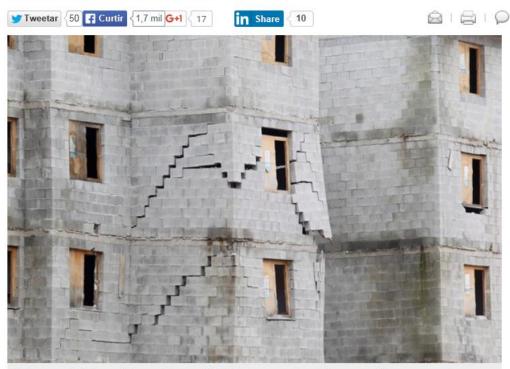
Rules for the structure and drafting of ABNT Technical Documents

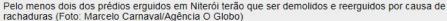
 o termo "norma" foi substituído por "Documento Técnico ABNT" como termo genérico para se referir a Projeto de Norma e a Norma Brasileira, bem como a outros documentos técnicos que possam surgir no futuro;

VUP (anos)		
Mínimo	Intermediário	Superior
≥ 50	≥ 63	≥ 75
≥ 13	≥ 17	≥ 20
≥ 40	≥ 50	≥ 60
≥ 20	≥ 25	≥ 30
≥ 20	≥ 25	≥ 30
≥ 20	≥ 25	≥ 30
	≥ 50 ≥ 13 ≥ 40 ≥ 20 ≥ 20	Mínimo Intermediário ≥ 50 ≥ 63 ≥ 13 ≥ 17 ≥ 40 ≥ 50 ≥ 20 ≥ 25 ≥ 20 ≥ 25

Considerando periodicidade e processos de manutenção segundo a ABNT NBR 5674 e especificados no respectivo manual de uso, operação e manutenção entregue ao usuário elaborado em atendimento à ABNT NBR 14037.

O projeto deve especificar o valor teórico para a Vida Útil de Projeto (VUP) para cada um dos sistemas que o compõem, não inferiores aos estabelecidos na Tabela e deve ser elaborado para que os sistemas tenham uma durabilidade potencial compatível com a Vida Útil de Projeto (VUP).





Prédios do Minha Casa, Minha Vida no Rio ameaçam cair e terão que ser demolidos

Conjunto é destinado a pessoas que viviam em áreas de risco. Entre elas, estão sobreviventes dos deslizamentos no Morro do Bumba em 2010

REDAÇÃO EPOCA, COM ESTADAO CONTEUDO

CDHU nega uso de material de má qualidade em casas populares e diz que corrigirá defeitos

A CDHU (Companhia de Desenvolvimento Habitacional e Urbano do Estado de São Paulo) disse, em nota, que os materiais utilizados em conjuntos habitacionais populares são de boa qualidade e que irá corrigir os problemas que apareceram em obras realizadas pelo órgão.

A afirmação foi feita após a <u>reportagem do UOL questionar a estatal sobre a série</u> de defeitos nos residenciais Brasilândia B34, no Jaraquá, zona norte da capital, <u>inaugurado em janeiro de 2011, e Pari A1/A2, na região central de São Paulo,</u> entregue às famílias em maio de 2010.

Foto: arquivo técnico Enio Barbosa

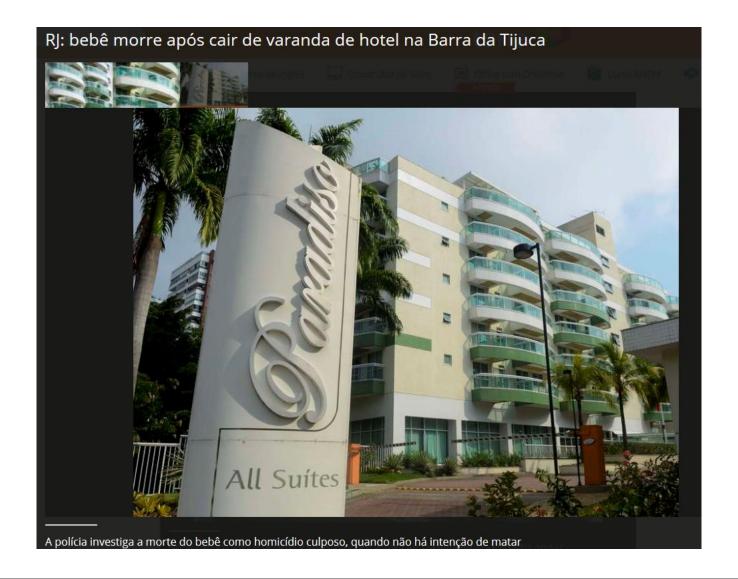
Foto: arquivo técnico Enio Barbosa

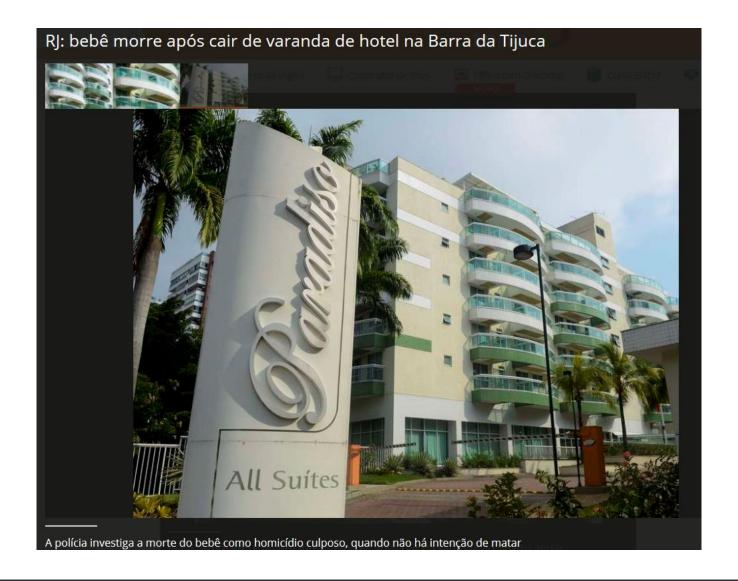
- Atender durante a vida útil, sob as diversas condições de exposição:
 - Não ruir ou perder a estabilidade de qualquer de suas partes;
 - Prover segurança aos usuários sob a ação de impactos, choques, vibrações e outras solicitações decorrentes da utilização normal da edificação, previsíveis na época de projeto.
 - Não provocar a sensação e insegurança aos usuários pelas deformações de quaisquer elementos da edificação
 - Não repercutir em estados inaceitáveis de fissuras de vedação e acabamentos
 - Não prejudicar a manobra das partes móveis, como portas e janelas, nem prejudicar o funcionamento normal das instalações em face das deformações dos elementos estruturais
 - Atender às disposições das NBRs 5629, 11682, 6122 relativas á interações com o solo e entorno da edificação
- O Manual do proprietário deve conter as informações relativas às sobrecargas limitantes no uso da edificação.

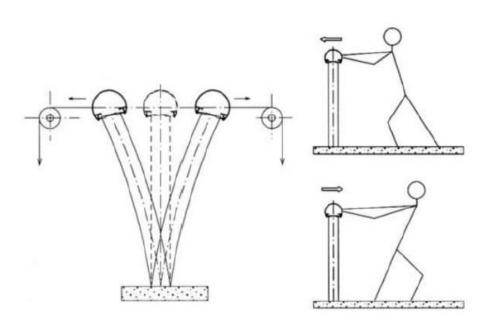
O PROJETO ESTRUTURAL deve especificar claramente:

- CAA : Classe de Agressividade Ambiental
- <u>Tipo de Controle</u> executivo da estrutura
- <u>Cargas</u> Permanentes e Acidentais adotadas
- <u>VUP</u>: Vida Útil de projeto
- C (fck): Classe / Resistência do concreto
- Ei : Módulo de Elasticidade do concreto
- A/C: Fator Água / Cimento máximo

<u>IMPORTANTE</u>: a compra do concreto deve, obrigatoriamente, ser feita com base nestes três parâmetros, que devem constar na <u>Nota Fiscal</u>, assim como o tipo de cimento utilizado no concreto.


Parapeitos e guarda-corpos





GUARDA-CORPOS - ABNT NBR 14718

ANEXO A -

Esforço Estático Horizontal

GUARDA-CORPOS - ABNT NBR 14718

ANEXO C - Resistência a impactos

Saco de couro com esferas de vidro, com 40 kg, altura de queda 1,50m - 600 J

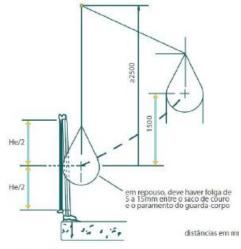


Figura 5: Impactos em guarda-corpos (NBR 14718)

Uso Inadequado

Ed. Champagnat (2007)

Erro Projeto + Falta de Manutenção

shafts e áreas de difícil acesso, com presença de instalações de água e esgoto

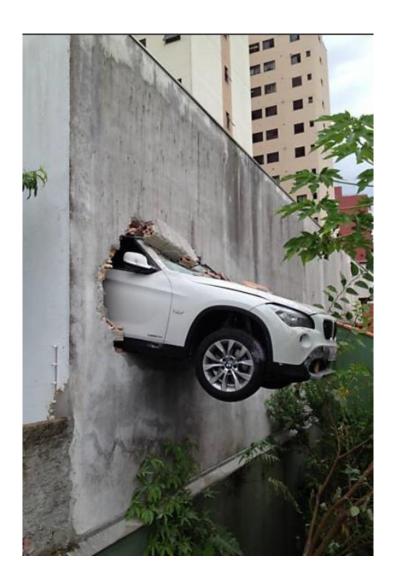
Áreas úmidas de pouca circulação

Fissuras com sinal de lixiviação

Aumento deformações

Perda de integridade

Aceleração deterioração


NBR 15575-5:2013 – Requisitos para os sistemas de coberturas

9.2.1 Critério – Guarda-corpos em coberturas acessíveis aos usuários

Lajes de cobertura das edificações, destinadas à utilização corrente dos usuários da habitação (*solariuns*, terraços, jardins e semelhantes), devem ser providas de guarda corpos conforme ABNT NBR 14718. No caso de coberturas que permitam o acesso de veículos até o guarda corpo , o mesmo deve resistir a carga horizontal concentrada com intensidade de 25 kN, aplicada a 50 cm a partir do piso .Caso haja uma barreira fixa que impeça o acesso ao guarda corpo , esta deve resistir as mesmas cargas.

Carro atravessa mureta de estacionamento de universidade e fica pendurado

Leia mais

lovem provoca

Breno Boechat

Tamanho do texto A A A

Um aluno da Pontificia Universidade Católica do Rio (PUC-Rio) sofreu um acidente na manhã desta quarta-feira no estacionamento da universidade. O carro do rapaz, que não teve o nome identificado, atravessou a mureta do edifício garagem, por volta de 8h. Por pouco, o veículo não caiu no andar de baixo. Os escombros atingiram outro carro, mas ninguém ficou ferido.

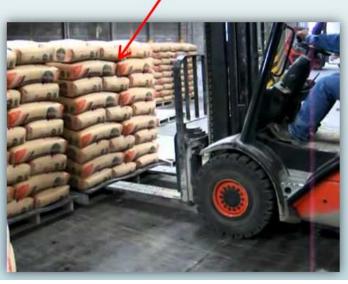
Carro despenca de garagem no 2º andar de prédio no Litoral Norte do RS

Acidente ocorreu nesta segunda em Capão da Canoa; ninguém se feriu. Conforme a BM, dona do carro ligou o veículo com marcha ré engatada.

Do G1 RS

Queda assustou pedestres e motorista do carro (Foto: Everson Michels/Arquivo Pessoal)

8- Como abrir uma janela num predio



Garagens – cargas de obra

Empilhadeiras: realidade nas obras

 $50 \times 50 \text{ kg} = 2500 \text{ kg}!$

MANUTENÇÃO

Platibandas

Sistemas ou platibandas previstos para sustentar andaimes suspensos ou balancins leves devem suportar a ação dos esforços atuantes no topo e ao longo de qualquer trecho, pela forcas F (do cabo), majoradas conforme NBR 8681, associados ao braço de alavanca (b) e a distância entre os pontos de apoio (f) conforme a figura, fornecidos ou informados pelo fornecedor dos equipamentos e dispositivos.

Constar no projeto os dados necessários que permitam indicar no manual de uso, a possibilidade ou não de fixação de andaimes suspensos por ganchos e as condições de utilização de dispositivos destinados à ancoragem de equipamentos de sustentação de andaimes e de cabos de segurança para uso de proteção individual, conforme esquema estabelecido em projeto.

Casal assassinado e vizinho discutiam por barulho há um ano

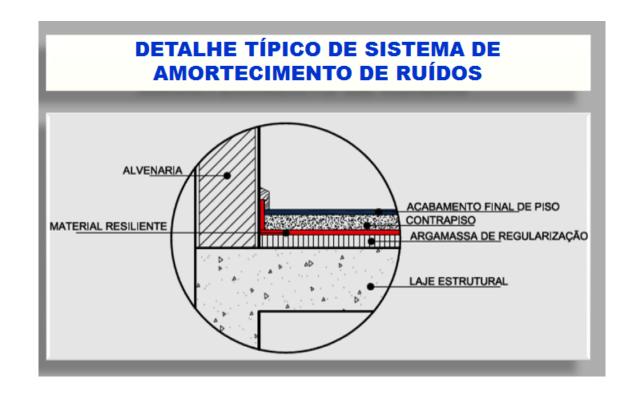
Empresário invadiu o apartamento e disparou seis vezes contra dentista e marido

Da Redação

O casal assassinado em São Paulo e o vizinho que cometeu o crime estariam se desentendendo por conta de barulho há um ano, segundo as investigações da polícia. O empresário do ramo de metalurgia Vicente D'Alessio, 62 anos, invadiu o apartamento na noite de quinta-feira (23) e disparou pelo menos seis vezes contra a dentista Miriam Cecília Amstalden Baida, 37, e seu marido, Fábio de Rezende Rubim, 40 anos. Depois, ele se matou dentro do elevador.

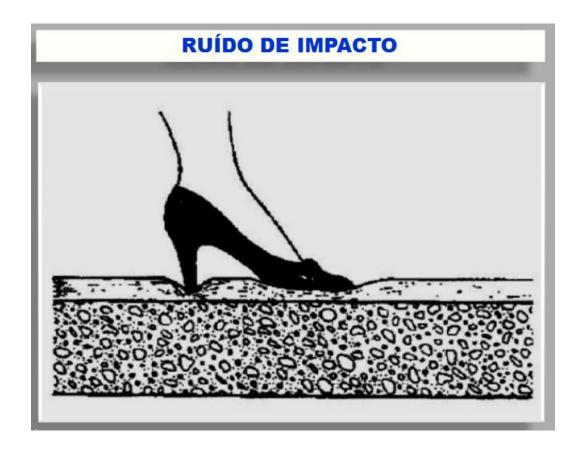
- Todos os sistemas que compõema edificação, inclusive a estrutura, devem apresentar um nível mínimo de isolamento acústico. Quando o projeto estrutural considerar que este isolamento deve contar com as camadas que ficam acima das lajes, por exemplo, isso deve constar claramente no projeto.
- Os tipos de ruído considerados são:
 - Ruído aéreo (conversas, áudio de música, etc.)
 - Ruído de impacto (salto alto, queda de objetos, etc.)
 - Ruídos provenientes de equipamentos e vibrações.

DESEMPENHO AC	ÚSTICO	DE LAJES
Elemento	L'nT,w	Nível de desempenho
Laje, ou outro elemento portante, com ou sem contrapiso, sem tratamento acústico	< 80 dB	Mínimo
Desempenho de laje	acústic maciça	
Espessura laje maciça	Ľ	nT,w
4 cm	9	4 dB
8 cm (+100%)	8	3 dB (-12%)
12 cm (+200%)	7	7 dB (-18%)



Como se pode concluir do slide anterior, o aumento da espessura de lajes de concreto não é acompanhado de redução de isolamento sonoro na mesma proporção.

Portanto, melhorias redutoras de transmissão de som ambiente e de impacto devem ser buscadas com soluções construtivas e não estruturais. Tais como: uso de manta acústica, pisos colados dos tipos vinílicos, carpetes, tapetes, etc.

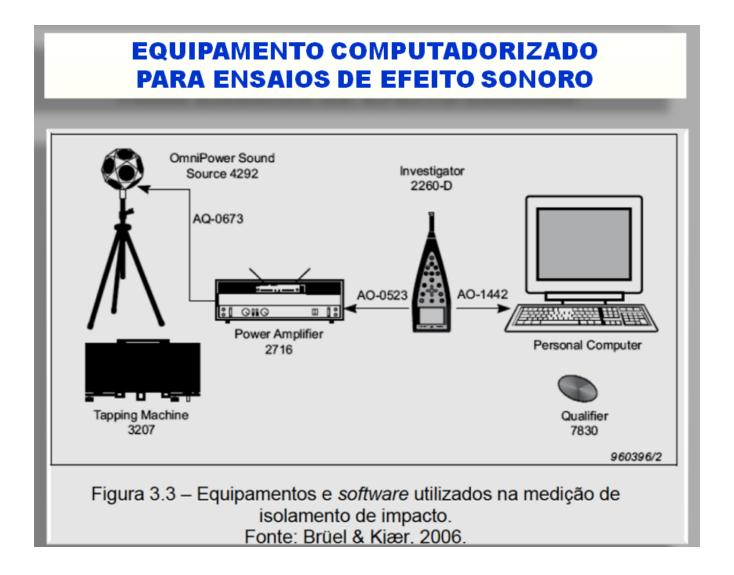


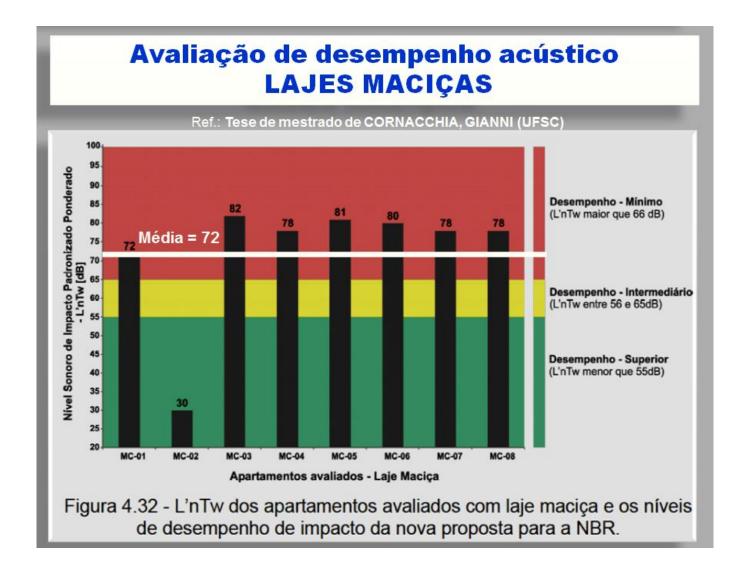
REDUÇÃO DE RUÍDO PARA DIFERENTES PISOS APLICADOS SOBRE LAJES MACIÇAS

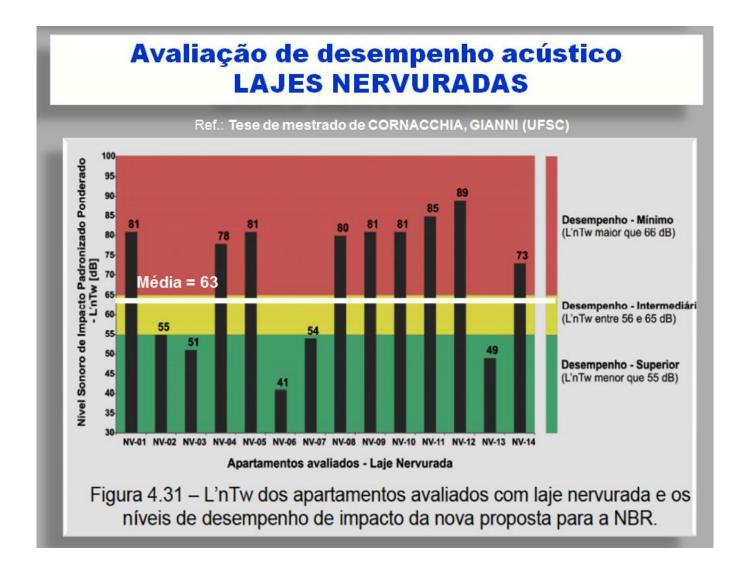
Revestimentos de piso	$\Delta L - dB(A)$
Borracha	2,5 a 13,9
Sintéticos	1,3 a 3,0
Carpetes	7,6 a 27,7
Carpetes com base isolante	33 a 39,1
Lam. de madeira c/ piso flutuante	11,0
Lam. de madeira + p. flut. + tapetes	22,4 a 30,2

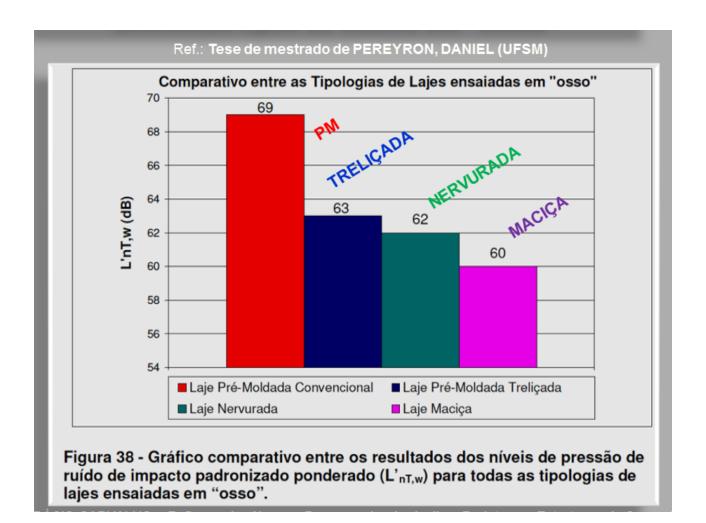
TABELA COMPARATIVA DE ISOLAMENTO A IMPACTOS SONOROS EM DIFERENTES PAÍSES

ISOLAMENTO DE PISO A IMPACTO SONORO


País	L'nT,w máximo [dB]
Áustria	48
Suíça	50
França	58
Inglaterra	62
Espanha	65
Brasil	80







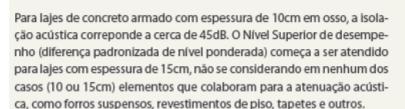

VALORES INDICATIVOS E COMENTÁRIOS CONSTANTES NO GUIA DA CBIC

Tabela 40 - Valores indicativos do índice de pressão sonora de impacto padronizado ponderado, L'nT,w (Fontes: IPT e ConstrutoraTecnisa)

Tipo de produto utilizado no piso flutuante e resultados de lajes sem qualquer tratamento acústico	Índice de pressão sonora de Impacto (dB)
Laje zero espessura 10cm, sem manta resiliente e sem contrapiso	82
Laje zero espessura 15cm, sem manta resiliente e sem contrapiso	71
Manta espessura 10 mm com borracha sintética e 88%, material reciclado, sem contrapiso	58
Manta de borracha reciclada espessura 5mm (800kg/m³) – sem contrapiso	58
Manta de borracha reciclada espessura 3mm (600kg/m³), mais contrapiso de 5 cm	64
Manta de lá sintética + contrapiso 5 cm.	57
Manta de polietileno 10 mm + contrapiso 5 cm.	52
Manta polietileno espessura 5 mm + contrapiso 5 cm.	60

Guia CBIC - Cap. 10, pág. 168

COMENTÁRIO

Material / Sistema	R _w (dBA)
Porta lisa com núcleo oco, massa superficial de 9 kg/m², sem nenhum tratamento nos encontros com o batente.	18*
Porta maciça com massa superficial de 60 kg/m², com tratamento acústico nos encontros com o batente.	28*
Janela de alumínio de correr, duas folhas, vidro de 4 mm (L = 1200, h = 1200mm)	20
. Janela de alumínio de correr, uma folha com vidro de 4 mm e duas folhas venezianas (L = 1200, h = 1200 mm)	19
Janela de alumínio de correr integrada ^o , duas folhas com vidro de 4 mm (L = 1200, h = 1200mm)	26
Janela de alumínio de correç duas folhas, vidro de 3 mm (L= 1200, h=1200mm), linha comercial	23
Janela de alumínio de correr, uma folha com vidro de 3 mm e duas folhas venezianas (L =1200, h =1200mm), linha comercial	16
Janela de alumínio Maxim-ar, linha comercial, 800 x 800mm, vidro com espessura de 4mm	27
Janela de aço Maxim-ar, linha comercial, 800 x 800mm, vidro com espessura de 4mm	24
Janela de aço de correr, uma folha vidro de 4 mm e duas folhas venezianas (L =1200, h =1200mm), linha comercial	15
Janela de aço de correr, quatro folhas de vidro de 4mm, linha comercial	16
Janela de alumínio de abrir, vidro duplo com espessuras de 6mm e 4mm, câmara de ar de 10mm entre as placas de vidro	30*
Janela de alumínio de abrir, vidro duplo com espessuras de 8mm e 6mm, câmara de ar de 12mm entre as placas de vidro	36*
(*) valores indicados pela Universidade de Coimbra	

Guia CBIC - Cap. 10, pág. 166

ABNT NBR 15575-1:2010

8.6.2 Métodos de avaliação

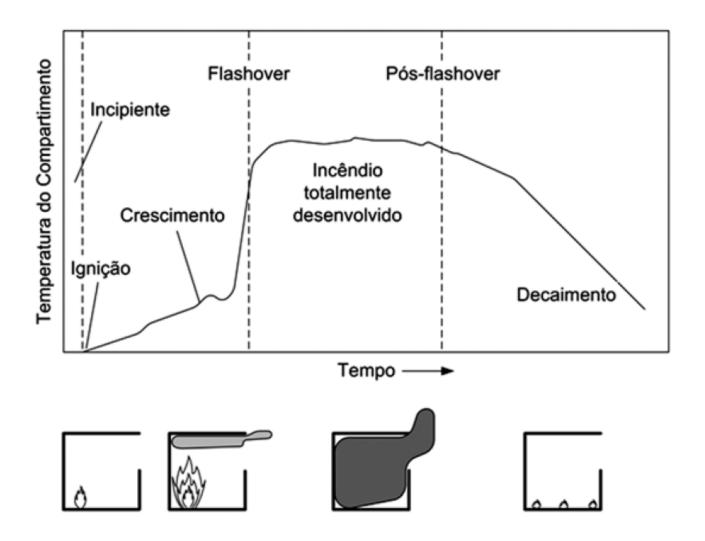
Análise do projeto estrutural em situação de incêndio.

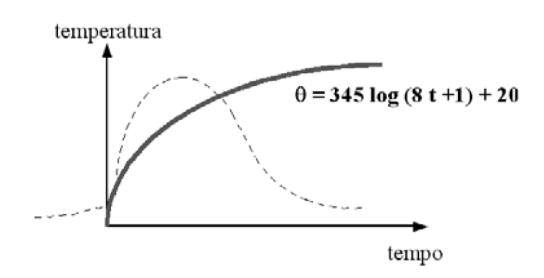
Atendimento às Normas de projeto estrutural, como a seguir relacionadas:

- ABNT NBR 14323, para estruturas de aço;
- ABNT NBR 15200, para estruturas de concreto;
- para as demais estruturas, aplica-se o Eurocode correspondente, em sua última edição.

DEFORMAÇÕES EXCESSIVAS, DANOS GRAVES E RUÍNA

Figura 2.1: Desabamento de um edifício residencial de múltiplos andares de concreto armado, em São Petersburgo, no dia 3 de junho de 2002, durante o incêndio (BBC News (2002), O Estado de São Paulo (2002) apud COSTA (2002)).


Figura 6.22: Ed. Hern Stoltz da Eletrobrás no Rio de Janeiro, 2004 (Fonte: Eng° Godart Sepeda).



NOV 2001 | NBR 14432

Exigências de resistência ao fogo de elementos construtivos de edificações - Procedimento

3.16 incêndio-padrão: Elevação padronizada de temperatura em função do tempo, dada pela seguinte expressão:

$$\theta_{\rm g} = \theta_{\rm o} + 345 \log (8 t + 1)$$

onde:

t é o tempo, em minutos;

 θ_o é a temperatura do ambiente antes do início do aquecimento, em graus Celsius, geralmente tomada igual a 20°C;

 θ_g é a temperatura dos gases, em graus Celsius, no instante t.

3.27 tempo requerido de resistência ao fogo (TRRF): Tempo mínimo de resistência ao fogo, preconizado por esta Norma, de um elemento construtivo quando sujeito ao incêndio-padrão.

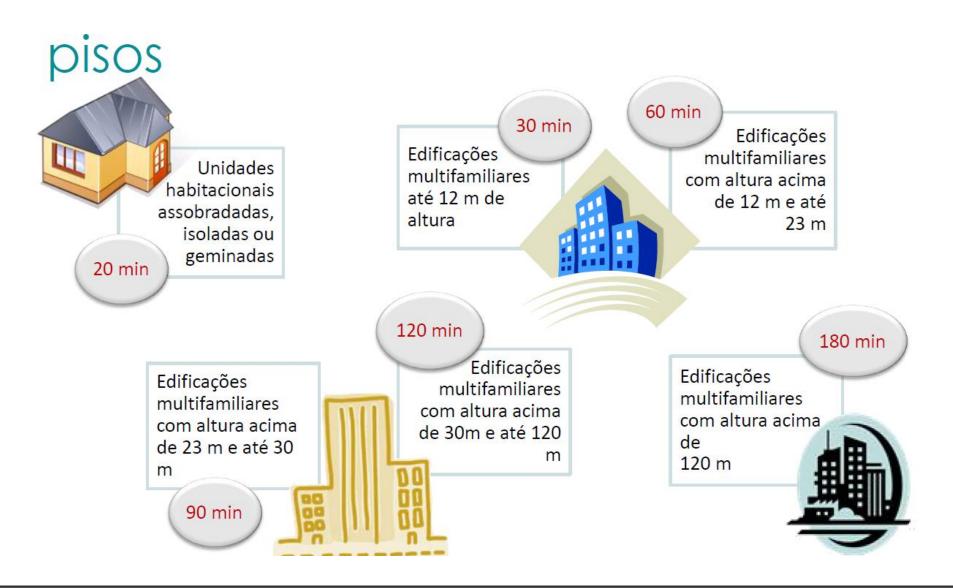


Tabela 5 - tempo requerido de resistência ao fogo (NBR 14432:2000)

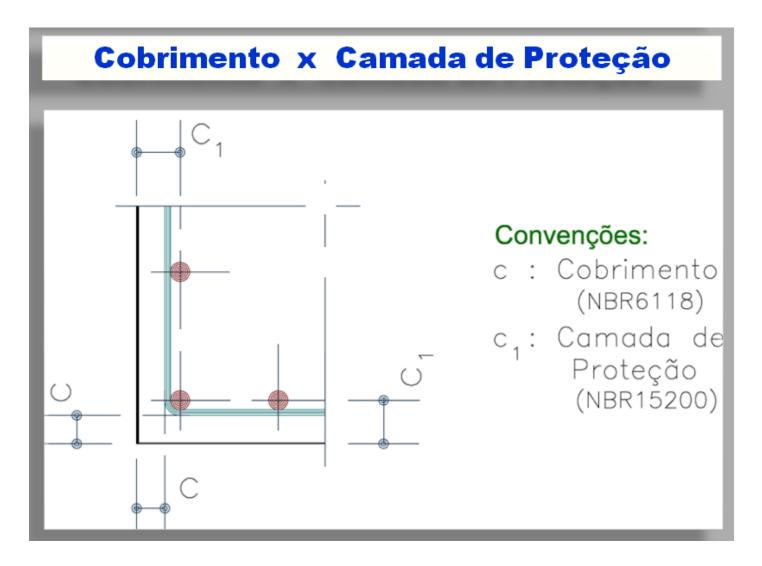
OCUPAÇÃO/	ALTURA DA EDIFICAÇÃO					
USO	h <u><</u> 6m	6m <u><</u> h <u><</u> 12m	12m <u><</u> h <u><</u> 23m	23m <u><</u> h <u><</u> 30m	h>30m	
Residência	30	30	60	90	120	
Hotel	30	60	60	90	120	
Supermercado	60	60	60	90	120	
Escritório	30	60	60	90	120	
Shopping	60	60	60	90	120	
Escola	30	30	60	90	120	
Hospital	30	60	60	90	120	
Igreja	60	60	60	90	120	

$$F_{di} = \gamma_g F_{gk} + F_{qexc} + \gamma_q \sum_{j=1}^{n} \psi_{2j} F_{qjk}$$

NOTA No caso em que nas cargas permanentes intervêm parcelas de pequena e grande variabilidade, seus efeitos podem ser considerados conforme ABNT NBR 8681.

Nesta verificação devem ser considerados os aspectos a seguir:

- a) usualmente, desprezam-se todos os esforços decorrentes de deformações impostas, por serem muito reduzidos e pelas grandes deformações plásticas que ocorrem em situação de incêndio;
- b) a ação do incêndio se traduz, usualmente, apenas na redução da resistência dos materiais e na capacidade dos elementos estruturais;
- como o incêndio tem uma probabilidade de ocorrência extremamente baixa, a ABNT NBR 8681 permite adotar para o fator de combinação ψ_{oj} o valor dos fatores de redução ψ_{2j} correspondentes à combinação quase permanente.


Assim, a verificação usual da estrutura em situação de incêndio se reduz a mostrar a seguinte condição:

$$S_{d,fi} = \left(\gamma_g F_{gk} + \gamma_q \sum_{j=1}^{n} \psi_{2j} F_{qjk} \right) \le R_{di} \left[f_{ck}(\theta), f_{yk}(\theta), f_{pyk}(\theta) \right]$$

Existem muitos métodos para fazer essa verificação. Para os efeitos desta Norma, são aceitos os quatro métodos descritos em 7.2 a 7.5.

Os valores de *h* indicado nas Tabelas 6, 7, 9 e 10 são os mínimos para garantir a função corta-fogo. Caso não haja essa exigência, a espessura das lajes poderá ser a calculada à temperatura ambiente conforme ABNT NBR 6118.

Tabela 6 – Dimensões mínimas para lajes simplesmente apoiadas c

TRRF ha mm		C1 mm on absolute a to a series mm on a should be to the total				
		Laje armada e	Laje armada em			
	$\ell_y / \ell_x \le 1,5$	$1,5 < \ell_y / \ell_x \le 2$	uma direção $\ell_y/\ell_x > 2$			
30	60	10	ob evil 10 memor	10		
60	80	10	15	20		
90	100	15	20	30		
120	120	20	25	40		
180	150	30	40	55		

a Dimensões mínimas para garantir a função corta-fogo.

b Lajes apoiadas nas quatro bordas; caso contrário, a laje deve ser considerada armada em uma direção.

Os valores de c_1 indicados nesta tabela são válidos para armadura passiva. No caso de elementos protendidos, os valores de c_1 para as armaduras ativas são determinados acrescendo-se 10 mm para barras e 15 mm para fios e cordoalhas.

Tabela 4 – Dimensões mínimas para vigas biapoiadas a

TRRF min	Combinações de b _{min} /c ₁ mm/mm				
	apimertedas er	2	3	4	mm
30	80/25	120/20	160/15	190/15	80
60	120/40	160/35	190/30	300/25	100
90	140/60	190/45	300/40	400/35	100
120	190/68	240/60	300/55	500/50	120
180	240/80	300/70	400/65	600/60	140

Os valores de c_1 indicados nesta tabela são válidos para armadura passiva. No caso de elementos protendidos, os valores de c_1 para as armaduras ativas são determinados acrescendo-se 10 mm para barras e 15 mm para fios e cordoalhas.

Tabela 5 - Dimensões mínimas para vigas contínuas ou vigas de pórticos a

Tabela 12 - Dimensões mínimas para pilares com uma face exposta ao fogo

TRRF min	Combinações de b _{min} /c ₁ mm/mm
30	155/25
60	155/25
90	155/25
120	175/35
180	230/55

Para pilares com mais de uma face exposta ao fogo, pode-se empregar o método analítico disposto em 8.3.

Tabela 10 — Dimensões mínimas para pilares

TRRF				Uma face exposta
min	$\mu_{\text{fi}} = 0.2$	μ _{fi} = 0,5	$\mu_{fi} = 0.7$	μ _{fi} = 0,7
	1	2	3	
30	190/25	190/25	190/30	140/25
60	190/25	190/35	250/45	140/25
90	190/30	300/45	450/40	155/25
120	250/40	350/45	450/50	175/35

NOTA μ_{fi} é a relação entre o esforço normal de cálculo na situação de incêndio e o esforço resistente normal de cálculo do pilar em questão em situação de temperatura normal.

Tabela 13 – Dimensões mínimas para pilares-p
--

a carrai		s de <i>b_{min}/c</i> ₁ mm	A server of _	
TRRF	$\mu_{fi} =$	0,35	$\mu_{fi} = 0,7$	
min	Uma face exposta	Duas faces expostas	Uma face exposta	Duas faces expostas
Microsto si	and the second	2	3	
30	100/10	120/10	120/10	120/10
60	110/10	120/10	130/10	140/10
90	120/20	140/10	140/25	170/25
120	140/25	160/25	160/35	220/35
180	180/40	200/45	210/50	270/55

Para o uso da Tabela 13:

$$\mu_{fi} = \frac{N_{Sd,fi}}{N_{Rd}}$$

onde

N_{Sd,fi} é o valor de cálculo da força axial em situação do incêndio;

é o valor de cálculo da força normal resistente do pilar calculado de acordo com ABNT NBR 6118 com γ_m à temperatura ambiente, incluindo os efeitos da não linearidade geométrica (2ª ordem) e desconsiderados os efeitos das forças decorrentes do vento.

Especificação de parâmetros da estrutura de concreto armado segundo os preceitos de desempenho, durabilidade e segurança contra incêndio

FABRÍCIO BOLINA — Avulsia de modetos, Mestavado BERNARDO TUTTKIAN — Concevados Genal, Professos ITT Porcolavas — Uniques

Altura da edificação (h)		Espessura dos cobrimentos nominais das armaduras (mm)										
	CAA		Viç Largura da	jas i viga (cm))	Lajes esp.¹ (cm)	Pilares Menor lado do pilar (cm)					
		8	12	16	19	6	19	25	30	35	40	45
		25,0	25,0	25,0	25,0	20,0	31,8	26,8	25,8	25,0	25,0	25,0
h≤12m	11	30,0	30,0	30,0	30,0	25,0	31,8	30,0	30,0	30,0	30,0	30,0
(TRRF 30 min)	III	40,0	40,0	40,0	40,0	35,0	40,0	40,0	40,0	40,0	40,0	40,0
	IV	50,0	50,0	50,0	50,0	45,0	50,0	50,0	50,0	50,0	50,0	50,0

¹ Espessuras mínimas, segundo ABNT NBR 15200

Dimensionado para a durabilidade, segundo a ABNT NBR 6118: 2014

Dimensionado para o incêndio, segundo a ABNT NBR 15200: 2012

Altura da edificação (h)		Espessura dos cobrimentos nominais das armaduras (mm)											
	CAA	Vigas Largura da viga (cm)			n)	Lajes esp.¹ (cm)	Pilares Menor lado do pilar (cm)						
		12	16	19	30	8	19	25	30	35	40	45	
12m <h≤23m (TRRF 60 min)</h≤23m 	1	27,7	25,0	25,0	25,0	20,0	46,8	43,8	41,8	38,8	35,8	32,8	
	11	30,0	30,0	30,0	30,0	25,0	46,8	43,8	41,8	38,8	35,8	32,8	
	III	40,0	40,0	40,0	40,0	35,0	46,8	43,8	41,8	40,0	40,0	40,0	
	IV	50,0	50,0	50,0	50,0	45,0	50,0	50,0	50,0	50,0	50,0	50,0	

¹ Espessuras mínimas, segundo ABNT NBR 15200

Dimensionado para a durabilidade, segundo a ABNT NBR 6118: 2014

Dimensionado para o incêndio, segundo a ABNT NBR 15200: 2012

Altura da edificação (h)		Espessura dos cobrimentos nominais das armaduras (mm)											
	CAA	Vigas Largura da viga (cm))	Lajes esp.¹ (cm)	sp.1 Menor lado do pilar (cm)						
		14	19	30	40	10	19	25	30	35	40	45	
		47,7	32,7	27,7	25,0	24,0	62,8	56,8	54,8	51,8	48,8	45,8	
23m <h≤30m< td=""><td>11</td><td>47,7</td><td>32,7</td><td>30,0</td><td>30,0</td><td>25,0</td><td>62,8</td><td>56,8</td><td>54,8</td><td>51,8</td><td>48,8</td><td>45,8</td></h≤30m<>	11	47,7	32,7	30,0	30,0	25,0	62,8	56,8	54,8	51,8	48,8	45,8	
(TRRF 90 min)	III	47,7	40,0	40,0	40,0	35,0	62,8	56,8	54,8	51,8	48,8	45,8	
	IV	50,0	50,0	50,0	50,0	45,0	62,8	56,8	54,8	51,8	50,0	50,0	

¹ Espessuras mínimas, segundo ABNT NBR 15200

Dimensionado para a durabilidade, segundo a ABNT NBR 6118: 2014

Dimensionado para o incêndio, segundo a ABNT NBR 15200: 2012

Altura da edificação (h)		Espessura dos cobrimentos nominais das armaduras (mm)											
	CAA		Vig Largura da	AND DESCRIPTION OF THE PARTY OF		Lajes esp.¹ (cm)	Pilares Menor lado do pilar (cm)						
		19	24	30	50	12	19	25	30	35	40	45	
	-1	55,7	47,7	42,7	37,7	34,0	72,8	68,8	65,8	62,8	60,8	55,8	
h>30m	11	55,7	47,7	42,7	37,7	34,0	72,8	68,8	65,8	62,8	60,8	55,8	
(TRRF 12 Omin)	Ш	55,7	47,7	42,7	40,0	35,0	72,8	68,8	65,8	62,8	60,8	55,8	
	IV	55,7	50,0	50,0	50,0	45,0	72,8	68,8	65,8	62,8	60,8	55,8	

¹ Espessuras mínimas, segundo ABNT NBR 15200

Dimensionado para a durabilidade, segundo a ABNT NBR 6118: 2014

Dimensionado para o incêndio, segundo a ABNT NBR 15200: 2012

SECRETARIA DE ESTADO DOS NEGÓCIOS DA SEGURANÇA PÚBLICA

POLÍCIA MILITAR DO ESTADO DE SÃO PAULO

Corpo de Bombeiros

INSTRUÇÃO TÉCNICA № 08/2011

Resistência ao fogo dos elementos de construção

5.7.2 Os elementos de compartimentação (externa e internamente à edificação, incluindo as lajes, as fachadas, paredes externas e as selagens dos *shafts* e dutos de instalações) e os elementos estruturais essenciais à estabilidade desta compartimentação, devem ter, no mínimo, o mesmo TRRF da estrutura principal da edificação, não podendo ser inferior a 60 min, inclusive para as selagens dos *shafts* e dutos de instalações.

