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Industry’s competitiveness and its challenges 
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Climate Change and CO2 reduction 

Saving of Natural Resources (minerals and energy) 

Occupational Health and the Use of Cement 

Sound Concrete Durability 

Innovative Use of Cement and Concrete 

Cost Efficiency 
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IEA roadmap targets for the cement industry 
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source: WBCSD/IEA 



German cement industry 2010 

Raw material drying 11.7 million 

 Slag and/or lime stone drying,  2.9 million 

Fuel drying and grinding 0.2 million 

Excess heat (recoverable), 5.6 million 

Non recoverable heat (<100 °C) 

6.7 million 

Process integrated fuel drying, 3.2 million 

Generating electrical energy in future ? 

Kiln exit gas 

and cooler 

vent air,  

27.1 million  

Process heat 

Waste heat recovery in clinker burning - in GJ/a 
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Energy efficiency – example Germany 

 Overall  energy demand almost 

constant 

 Electric energy: only 10 – 15% 

 Increase of energy demand 

– grinding (higher fineness, 

alternative raw materials) 

– new gas cleaning strategies 

 Alternative fuels replace and 

preserve fossil resources  



Waste heat recovery to increase energy efficiency 

 Introduced more than two decades 

ago in Japan 

 Many installations and good 

experience in Asia 

 Economic feasibility depends on 

specific situation such as availability 

of excess heat, energy costs and 

overall efficiency 

 More full-scale installations to be 

expected on global level 
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Source: SPZ Gebr. Wiesböck 

Source: Holcim 
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New grinding systems 

General trends: 

 Large installations 

 Capacity:  850 t/h raw meal  

  650 t/h cement 

 

Innovations: 

 New drive concepts 

 Higher availability 

 Better maintenance 

 Geometry of rollers and tables 

Sources: Gebr. Pfeiffer, FLS, Hefei, Thyssen-Krupp, Loesche 
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Optimisation of existing mills 

Potentials: 

 Large number of existing mills 

 Low energy efficiency 

 Estimated savings of up to 10% 

Challenges: 

 Increasing demand 

 Diversification of product portfolio 

 Higher fineness 

 Separated vs. inter-grinding 

 Increased understanding of the process 

 Development of new optimisation tools 



12 

Single particle vs. bulk comminution 

Source: Höffl, 

„Zerkleinerungs- und  

Klassiermaschinen“ 

Raw Material 

Clinker 

Quarz 
Limestone 
Clinker 

Single - particle communition 

Bulk comminution 
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Single-particle 

comminution is by 

far more energy 

efficient than bulk 

material 

comminution. 
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Future grinding technologies 

 Is the optimum of comminution already reached? 

 What can we learn from other industries? 

 Analysis of grinding systems 

 Division into sub-processes: 

– comminution 

– material handling 

– dispersion 

– classification … 

Sources: Cemag, Reichardt, R. 



Round table „Future grinding technologies“ 

Development of new and innovative grinding technologies! 

• Partners required for full access to researchers, suppliers and 

operators in the field of comminution 

• Organisational structures required to ensure continuous work 

progress 

 

 



Mill System 

Exemplary division into sub-processes 

Material 
handling 

Feed size 

Inhomogenities 

Hold up time 

Moisture 

Comminution 

Stress 
probability 

Energy 
utilization 

Breakage 
conditions 

Compression 
losses 

Wear 
protection 

Wear rates 

Influence of 
worn elements 

Maintenance 
efforts 

… 

… 

… 

… 

… 
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Minamata Convention on Mercury 

 Globally binding instrument 

 Targets at worldwide reduction of 

mercury emissions 

 Open for signature in Oct 2013 

UNEP Global Mercury Assessment 

 Cement industry’s Hg emissions: 9% 

 Emissions of cement plants 

overestimated? 

Mercury emissions – Global context 

17 
Source: UNEP 2013, reference year: 2010 
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Mercury emissions – BAT and abatement strategies 

Behaviour of mercury in clinker 

burning is well understood 

 Knowledge gaps regarding 

binding forms 

Abatement strategies: 

 Input control for certain 

alternative materials and fuels 

 Dust bleeding to release mercury 

cycles in combination with 

temperature control 

 End-of-pipe solution ? 
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NOx reduction in the cement industry / BAT 

In Europe: 

BAT for NOx Reduction in the cement industry: 

 Primary measures/techniques 

 Staged combustion 

 SNCR 

 SCR (subject to catalyst/process development) 

Achievable Emission Level (AEL): 

< 200 - 450 mg/m3 for preheater kilns 

400 - 800 mg/m3 for LEPOL and long rotary kilns 

NH3 slip from SNCR process: 

30 - 50 mg/m3 



High efficiency SNCR process 

Characteristics: 

 Injection of reducing agent is process 

controlled  

 Several injection layers according to the 

temperature profile in the riser duct 

Objectives: 

 Optimal distribution of reducing agent in the 

riser duct 

 Low NH3 slip (emission of unreacted 

ammonia) 

 Reduced consumption of reducing agent 
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Injector configuration in the riser duct 

of a rotary cement kiln 



SCR Demonstration projects in Germany and Austria 
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Post-combustion carbon capture 

 Tail-end measure 

 No impact on clinker 

burning process 

 Different concepts 

chemical absorption 

carbonate looping  

membranes  

 Chemical absorption 

process requires low 

pressure steam - doubling 

of energy consumption 

 



Oxy-fuel process 

O2-generation CO2-

processing 
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Cost estimates 

Commercially available: 

 2025 post-combustion capture 

 2030 oxy-fuel processing 

 Cost per tonne CO2 avoided       

(incl. investment, transport, 

storage) 

 Post-combustion: 50−100 €/t 

 Oxy-fuel: 40−60 €/t 

 Significant increase in energy 

consumption 

 Cement production cost will 

increase significantly 

oxy-fuel 

process 

post- 

combustion  

capture 
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Utilization of captured CO2 for methane production 

CO2 sources like 

power plants, cement 

plants, etc. 

CO2 capture 

technologies 

methane production 
H2 production with 

regenerative 

energies 

H2 

CO2 

http://upload.wikimedia.org/wikipedia/commons/8/85/Windkraftanlagen_D%C3%A4nemark_gross.jpg


CCR – Current status and open questions 

Opportunities: 

 Could be a “big sink” for CO2 

 Can be driven by renewables 

 Renewable energy can be 

produced at best location 

 H2 and methane can be stored 

 Each step of the process is 

known 

Open questions: 

 Technical and economical 

feasibility 

It would be good to 

understand the potentials and 

eventually  

liaise with partners  h
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The use of CO2: The Audi TCNG project as an example 
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The use of CO2: The Audi TCNG project as an example 
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Portland cement clinker based 

 Well tried and proven constituents 

 Good availability of materials 

 Limited in CO2 efficiency 

 

New approaches 

 Belite Calciumsulfoaluminate 

Ternesite  

 Belite Rich Portland Cement  

 Celitement 

 

 First important steps reported 

 Small volumes to start with 

 Higher CO2 efficiency 
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Future cements 



Calcined clays – a potential cement constituent 

31 

 High availability worldwide 

– 26% of the sedimentary 

rocks are clays or 

shales 

 In Europe EN 197-1: 

– potential use in CEM II, 

CEM IV and CEM V 

 Reactive silicon dioxide 

content shall be not less 

than 25 mass % 

 

 

Source: http://www-esd.lbl.gov/ESD _staff/kleber/BioGeoChem/E5Tomi.htm 



Cement optimization in the context of durability 

Compressive strength (left) and scaling of concrete (cube test, right) 
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Portland-limestone cement CEM II/B-LL with 30 M.-% limestone 



Cement optimization in the context of durability 

Compressive strength (left) and scaling of concrete (cube test, right) 
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test 1 with 6,140 cm2/g 

test 2 with 6,900 cm2/g 

Portland-limestone cement CEM II/B-LL with 30 M.-% limestone 

compressive strength ≠ durability 
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Thank you! 


