

20 a 22 de Junho de 2016 - São Paulo/SP

The Role of Concrete in Sustainable Building

Steven H. Kosmatka
Portland Cement Association

Realização

MIT Concrete Sustainability Hub: Changing the Rules of the Game

In the past... research focused on changing the properties of concrete

Now, the CSHub is changing the way concrete is evaluated & implemented in infrastructure projects

CSHub Mission

Develop breakthroughs that will lead to more sustainable and durable infrastructure, buildings, and homes

- 1. Provide scientific basis for informed decisions
- 2. Demonstrate the benefits of a life-cycle perspective
- 3. Transfer research into practice

MIT is trying to open people's eyes to the benefits of concrete--...using a life cycle perspective

impacts

Cost

CSHub approach is holistic and multidisciplinary

Science

Engineering

Economics

Environment

1. Provide scientific basis for informed decisions

Concrete science

Pavement-vehicle interaction

Building resilience

Albedo

Paving competition

2. Demonstrate the benefits of a life-cycle perspective

An integral part of communities

Concrete science

Pavements

Transportation Research Board

Buildings

CSHub research has received extensive media attention

CSHub research has had impact ucpro

U.S. Department of Transportation

Federal Highway Administration

Towards Sustainable Pavement Systems:
A Reference Document

South

DOT

Dakota

FHWA-HIF-15-002

UNIVERSITY of CALIFORNIA PAVEMENT RESEARCH

Davis • Berkeley CENTER

MOUNTAIN-PLAINS CONSORTIUM

MPC 14-275 | Xiao Qin, Kai Wang, and Zhiguang Wang

Selection of Interest and Inflation Rates for Infrastructure Investment Analyses

CSHub researchers are sought for their expertise

3. Transfer research into practice

Technology transfer spectrum

Innovation Incubation Implementatio

PVI research: clear success in transition of innovation to implementation

2010

2014

2016?

$$\delta E = -P \frac{dw}{dX} \approx P \frac{w_{max}}{\ell_s/2}$$

Innovation

Incubation Implementation

Durability Research

- Alkali-Silica Reactivity—Mike Thomas, University of New Brunswick
- Freeze-thaw and deicer—Jason Weiss, Oregon State University
- Modeling interaction—MIT

Durability: the ability of concrete to survive the environment to which it is exposed

Concrete distress mechanisms*

^{*}P. Taylor, "Long-Life Concrete: How Long Will My Concrete Last?", National Concrete Pavement Technology Center, 2013

Distress mechanisms understood, but quantification is a challenge

Current experimental methods do not adequately predict pavement durability

Pavement durability models do not directly account for material properties

Objective: improve concrete pavement durability & demonstrate benefits

- Improve scientific understanding of pavement distresses
- Translate knowledge into pavement design & maintenance
- Demonstrate cost and environmental benefits of durable pavements and pavement networks

Vision: connect pavement materials and performance prediction

Pavement Material Composition

Pavement
Durability
Performance

- For a given material composition and context:
 - What is the potential for ASR/FT damage?
 - What is the rate at which it would happen?
- Which conditions lead to ASR/FT damage?

There have been several pavement implementation projects CO: LCCA case MN: LCCA case studies studies* **DE**: LCA case CA: PVI *studies* network analysis VA: PVI City of LA: network local roads analysis LCA *Projects underway

Advisory support in LCCA legislation: AL, MD, NC Interactions with DOTs and Federal Agencies: AASHTO, FHWA, GAO, OMB, FL, MD, MN, MT, NC, NV, TX

MIT research has influenced pavement projects in several

port

Buildings implementation projects on streamlined LCA are beginning now

Implementation evolution

2010

PCA & NRMCA manage implementation

2013

A few industry partners facilitate projects with MIT

2016

Industry and MIT develop implementation plans

What did it take to achieve success in California? Local effort

Objectives

Strategy

Understanding of social system

Dedication

Patience

A diverse and well-integrated team of experts is critical to designing, building, and implementing an effective strategy.

Detailed analysis identified the "eco-system" of key decision makers, opinion leaders, and other stakeholders.

Key factors that determine rate of adoption of innovations

Perceived attributes of innovations

Types of innovation-decisions

Communication channels

Nature of the social system

Extent of promotion efforts

New paradigms require new promotion methods

Collaborative communication & implementation plans should consider these elements

D • 1	1.1.21	r •	1.
Perceived	attributes	OTINNO	Vations
	MIIIDOI C3		V GIIOI IS

Types of innovation-decisions

Communication channels

Nature of the social system

Extent of promotion efforts

MIT	Industry	
\checkmark	\checkmark	
	\checkmark	
\checkmark	\checkmark	
	\checkmark	
\checkmark	✓	

CSHub and industry joint communication efforts support

implementation

rface Albedo Research Briefs

Figure 1. The changes in surface temperature from elevating urban surface albedo during summer of 2005. The four initial conditions have starting dates of Dec. 1 to Dec. 4, 2004, respectively, while the Ensemble Mean is the average of the four initial conditions. Green color represents cooling rom decrease in surface imperature due to elevating albedo, while vellow represents

Newsletter

Headlines

- Research Briefs
 - Streamlined Embodied LCA of Residential Buildings
 - Quantifying Climate Impacts of Surface Albedo
- Hub News:
 - CSHub Team Visits Ready-Mixed Concrete

Researcher Profile In a new feature, we profile CSHub

researchers. This month, meet

Presentations

November 2014

Pavement-related resea at the MIT Concrete Sustainability Hub CONCRETE SUSTAINABILITY

Quantifying

Surface Temperature (albed

Talking Points

Fact Sheets & Topic **Summaries**

SHEET UST 2014

Pavement-related resear

CONTEXT

Funding for roads will remain constrained for the foreseeable fut spent more wisely. Shortsighted decision-making means that the costs of pavements get passed to future generations.

- . The U.S. is not sufficiently investing in its ailing road syst requires \$170 million in annual capital investment, yet the
- The road system gets a grade of D from the American Sc
- Congested highways cost roughly \$101 billion in wasted

Sustainable Pavements

U.S. road transportation accounts for 83% of greenhouse gas (GHG) emissions from the transportation sector and 27% of all GHG emissions in the U.S. The road system requires 350 million tons of materials annually for maintenance. It gets a grade of D from the American Society of Civil Engineers, which reports that congested highways cost roughly \$101 billion in wasted time and fuel

For the foreseeable future, U.S. infrastructure funding will remain significantly below what is required to improve conditions and performance. Because of the environmental impact of pavements and the economic

CSHub is presenting outcomes to a wide range of audiences

RMC & Cement Organizations

- RMC
 - NRMCA
 - States: IA, GA, KY, MN, MD, NC, SC, VA
 - LatinAmerica
- Cement
 - PCA
 - CNCA
 - Intercem
 - CSI
- ACI
- NCC

Other Industries

- Paving
 - ACPA
 - ACPA NW
 - IGGA
 - MO/KS CPA
 - NCC
 - Ontario
- Buildings/ Architecture
 - FLASH
 - USGBC
 - CLF
- Civil

Government Agencies

- AASHTO
- DHS
- EPA
- FEMA
- FHWA
- IDB
- GAO
- OMB
- State DOTs
- TRB
- US Council of Mayors
- White House

Research

- Disciplines
 - Material science
 - Mechanics
 - Buildings LCA/LCCA
 - Pavements LCA/LCCA
- Regions
 - US
 - Canada
 - China
 - Europe
 - Latin America

~40 Presentations for 2016

Hub Value

<u>Without</u> the CSHub: research, publications, conference presentations

Innovation

Incubation

Implementation

<u>With</u> the CSHub: research, publications, conference presentations, administration, implementation, communication, industry interaction, webinars, education, interaction with other industry and research efforts

Innovation

Incubation

Implementation

The CSHub structure extends industry's investment

CHANGING THE RULES OF THE GAME

The CSHub is changing the way concrete is evaluated & implemented in infrastructure projects

More information available at:

http://cshub.mit.edu/ cshub@mit.edu