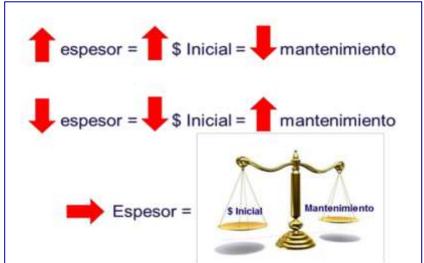


Uma espessura muito alta

Alto custo inicial e baixo custo de manutenção.

Uma espessura muito baixa

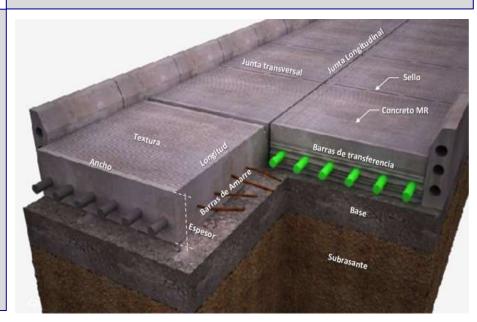

Baixo custo inicial, mas alto custo de manutenção.

Espessura adequada

Equilíbrio entre custo inicial e baixa manutenção.

Pero ... Será que tudo depende da espessura?

Sim.


Mas em conjunto com outras variáveis.

Pelo menos 20 anos.

Tendência: 50 anos ou mais.

Controle de tensões e deformações, em conjunto com:

- Tamanho da placa
- Apoio lateral
- Transferência
- Cargas
- E muito mais

O dimensionamento é muito mais que a espessura

- Método de dimensionamento Usado
- Apoio lateral
- Espessura da placa de concreto
- Espessura das camadas de base
- Sistema de transferência
- Sistema de ligação
- Reforço estrutural
- Produção de concreto
- Resistencia a fleção /compressão
- Mezclas de concreto
- Plano de qualidade e ensaios
- Considerações sobre transporte e descarga
- Considerações de colocação
- Tipo e direção do acabamento superficial
- Critérios para proteção e cura do concreto
- Tipos de juntas
- Modulação de placas (Comprimento/Largura)
- Dimensionamento das cavidades de corte
- Sequência de corte
- Sistema de selagem de juntas
- Tolerâncias dos elementos acabados
- Critérios para apertana Sistema de drenagem Critérios para abertura ao tráfego

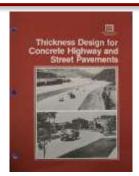
Fuente: ACPA

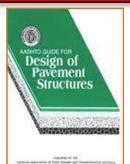
E qual método será melhor?

A primeira variável no dimensionamento de um pavimento de concreto é a seleção do método.

TODOS OS MÉTODOS SÃO BEM VINDOS

Os tradicionais, mas bem aplicados.

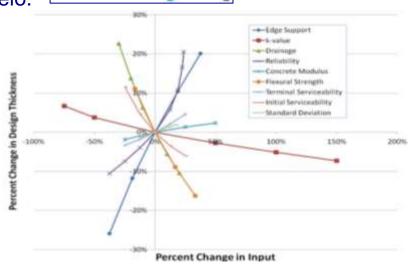

Tenha cuidado com a interpretação.

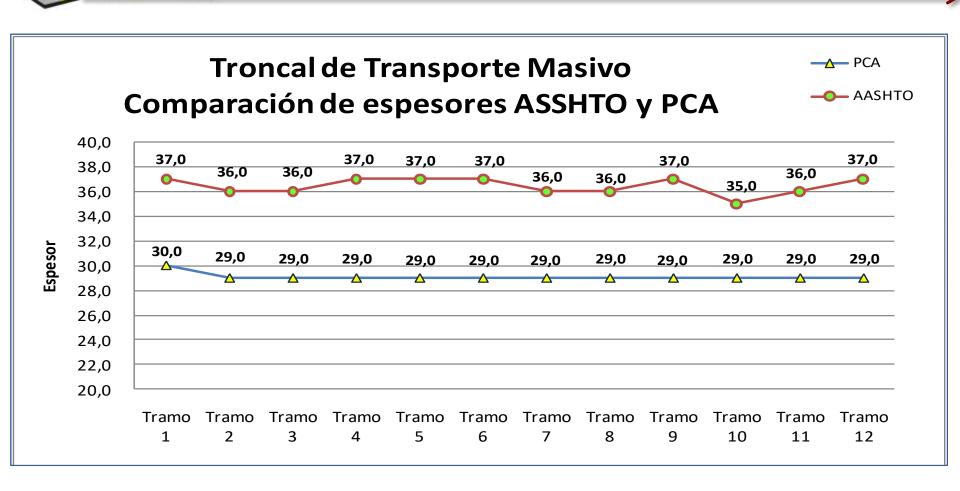

Os novos métodos, mas:

Testados, calibrados e ajustados para o meio.

Recomendação:

- Comparar
 - Entre métodos
 - Manual vs software
- Verifique a sensibilidade do método





Ao usar dois ou mais métodos, os resultados podem ser diferentes

Cuidado com o software de dimensionamento

O software é muito útil, mas deve ser usado com responsabilidade.

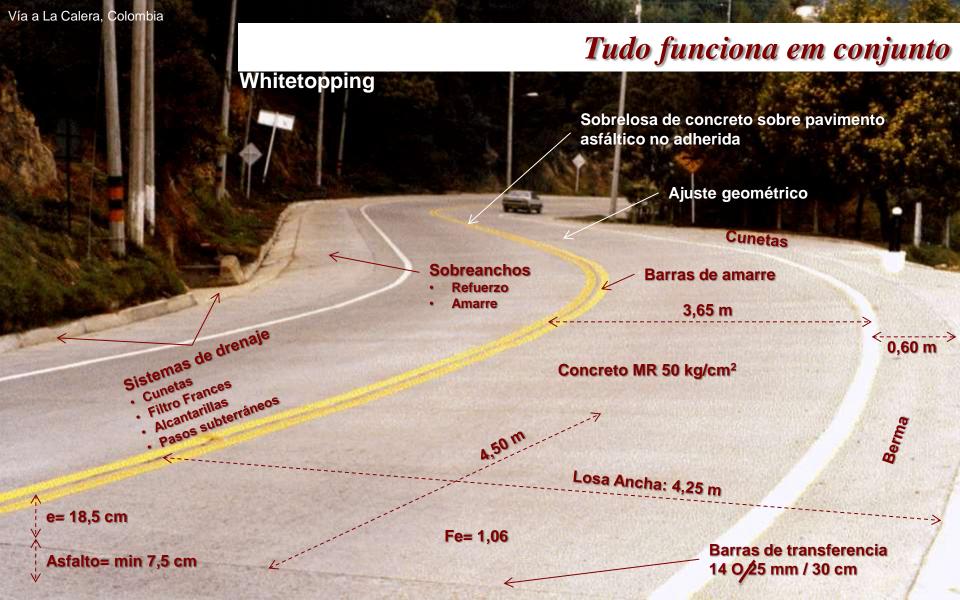
- Verifique a consistência do dimensionamento completo.
- Compare com o dimensionamento manual.
- Antes de começar, tenha uma expectativa do resultado.

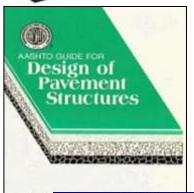
O que esperar de uma espessura?

Antes de começar, você deve ter uma ideia do resultado.

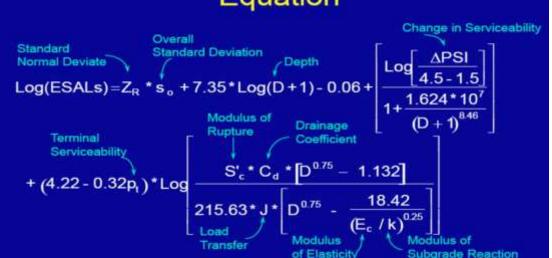
Por exemplo:

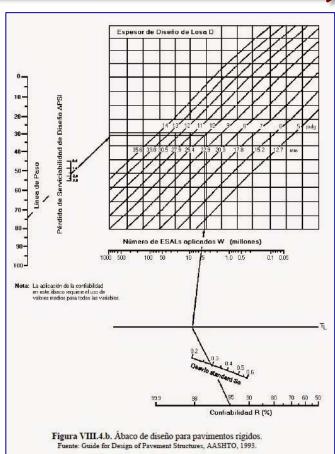
Espessura de uma placa de um sistema BRT?




Espere espessuras maiores que 27 cm

Av. Caracas: 20 cm Autonorte: 21 cm





Fundamentos:

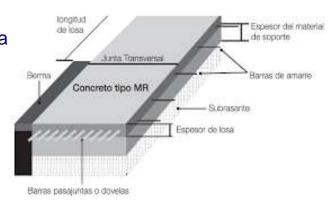
- Falha funcional (não apenas falha estrutural).
- Capacidade de serviço
- Capacidade de servir o tráfego ao longo do tempo.

1986-93 Rigid Pavement Design Equation

Muitas variáveis que afetam a espessura

Variáveis que afetam a espessura

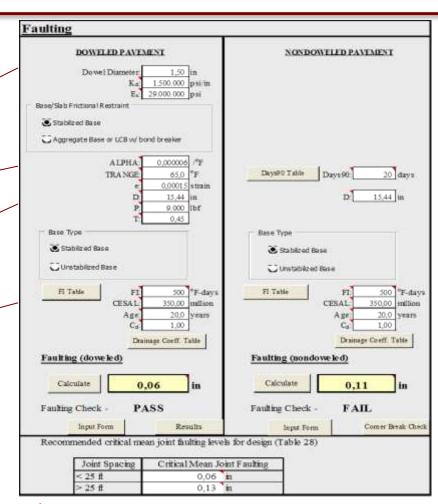
- Eixos
- Confiabilidade
- Desvio padrão
- Resistência
- Módulo de elasticidade
- Transferência de carga
- Módulo de reação do subleito
- Coeficiente de drenagem
- Condição inicial
- Condição final


AASHTO 93 - WinPAS

Tramo II

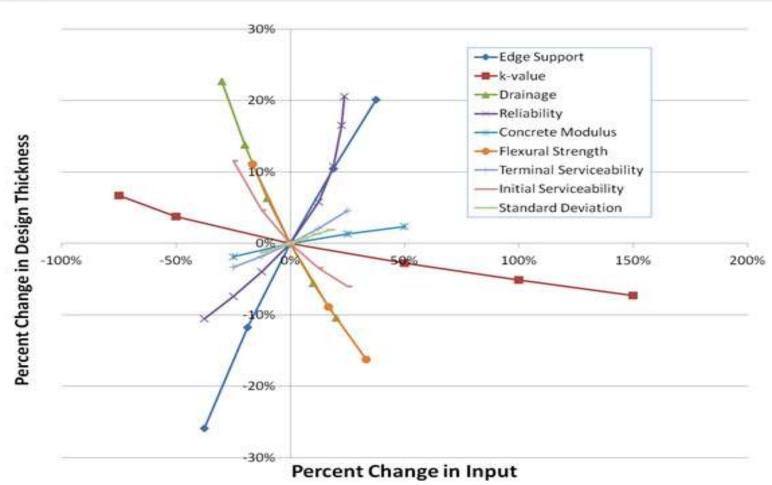
Tiano II		
Ejes equivalentes	W82	350.000.000
Confiabilidad		95 %
Desviación estándar		0,30
Modulo de Rotura	MR	45 psi
Módulo de elasticidad	Ec	4.400.000 psi
Transferencia de carga	J	2,7
Módulo de reacción de la subrasante	k	398,8 psi/in
Coeficiente de drenaje	Cd	1,00
Serviciabilidad Inicial	Po	4,5
Serviciabilidad Final	Pt	2,5

Resultado


Espessura

Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete Pavement Performance Prediction Information L. General Retrieve Data Agency: ASOCRETO Street Address: CALLE 102 # 16 - 40 Save Data City: BOGOTA State: COLOMBIA Project Number: 1-20-98LCB ID: Troncal 2 Description: Pavimento de Concreto con Juntas Location: II. Design Payerrent Type, Junt Spacing Serviceability **●** 39CP Initial Servicesbility, PI: Joint Specing Terminal Serviceability, P2: (C) JRCP 13,3 **PCC Properties** () CRCP 28-day Menn Modulus of Rupture, (Sc) JPCF Bastic Modulus of Slab, E.: 4.144.000 159,0 in Poisson's Ratio for Concrete, m Effective Joint Spacing: Edge Support Table 14 Base Properties: Conventional 12-ft wide trafficians 800.000 pag Elastic Modulus of Base, Eq. Design Thirkness of Base, M. 10,0 Conventional 1.2-ft wide trafficiane + tied PCC. Stab-Base Friction Factor, f. C) 2-ft widened slab w/conventional 12-ft traffic lane. Reliability and Standard Deviation Reliability Level (R): 1.00 Edge Support Factor: Overall Standard Deviation, Sc. Sensitivity Analysis Climatic Properties Slab Thickness used for Thickness Mean Annual Wind Speed, WIND: Sensitivity Sensitivity Analysis: Mean Annual Air Tengoenmen, TEMP Mean Annual Precipitation, PRECIP. Modulus of Rigiture C Einstic Modulus (Sieb) Subgrade k-Value C Electric Modulus (Blass) O Base Thideness Calculate Seasonal II. Value 120 pairm C Joint Spacing X-White X Design ESALA O Standard Deviation C Rehability Calculate Traffic 250,0 million 13,47 in Calculate Calculated Slab Thickness for Above Inputs: Faulting Check

Rigid Pavement Design - Based on AASHTO Supplemental Guide


Variáveis e verificações adicionais

Verificação da diferença de altura nas juntas

Análisis de sensibilidade - WinPAS

Fuente: ACPA

Guia de dimensionamento baseado em desempenho

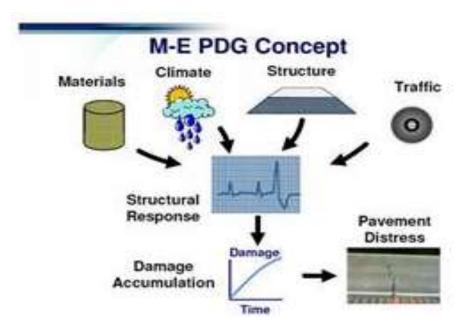
M-E PDG

Desenvolvido por AASHTO

- ✓ Novo método de dimensionamento
- ✓ Reabilitação de pavimentos existentes
- Previsão do comportamento funcional do pavimento e extensão dos danos

Mecanicista

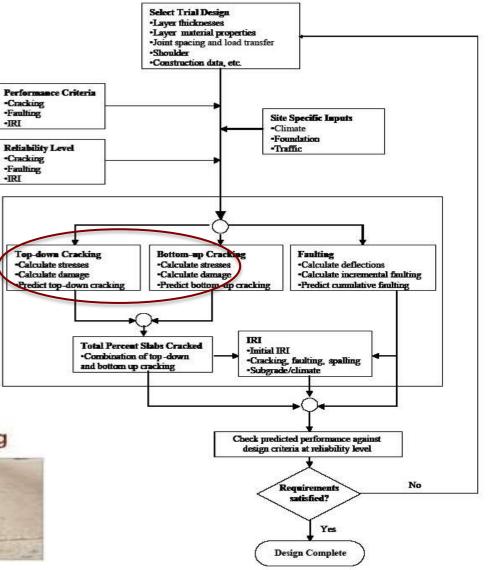
 Baseado em modelagem (esforços, deformações, fadiga, dano acumulado, etc.


Empírico

 Dados de laboratorio e desempenho de campo

Mecanicista-empírico

✓ União entre teoria e dados



Indicadores de desempenho

- ✓ Fissuras
 - ✓ De cima para baixo
 - ✓ De baixo para cima
- ✓ Diferença de altura nas juntas
- **√** IRI

Determinação da espessura da placa

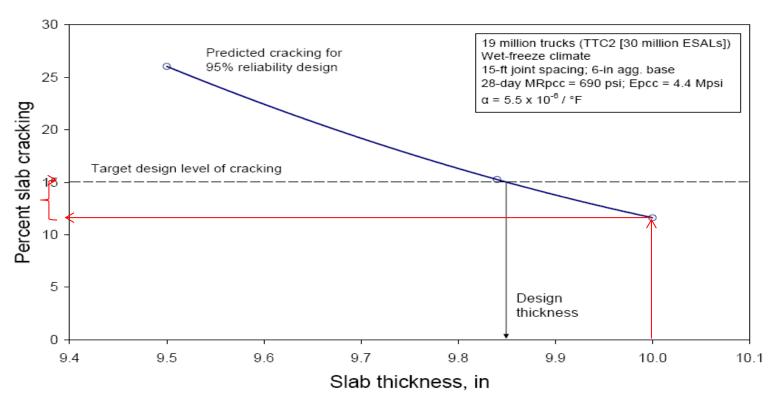
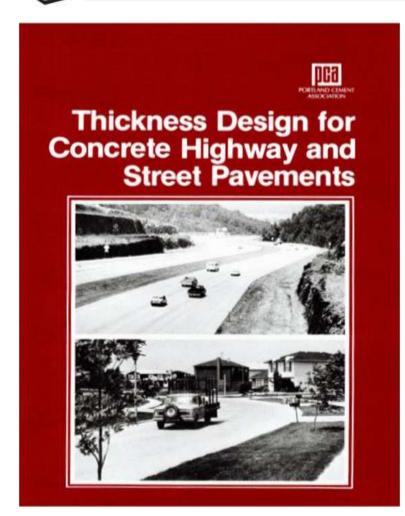
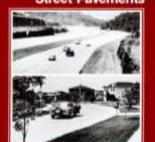



Figure 3.4.29. Iterative process of determining the required slab thickness.

Fundamentos:

- Baseado na "Regra de Palmgren-Miner", formulada em 1945.
- Cada pavimento tem uma certa resistência à fadiga contra esforços mecânicos causados por diferentes cargas.
- Dois critérios de dimensionamento:

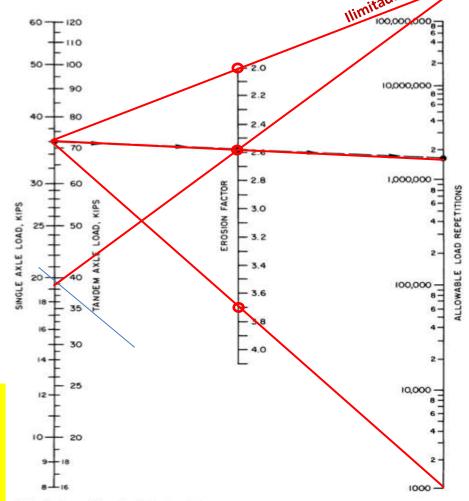
Fadiga


Manter os esforços devido à repetição de cargas dentro dos limites de segurança e, assim, evitar fissuras por fadiga.

Erosão

Limite aos efeitos da deflexão do pavimento nas bordas, juntas e cantos e, assim, controlar a erosão de materiais de base e bermas.

Thickness Design for Concrete Highway and

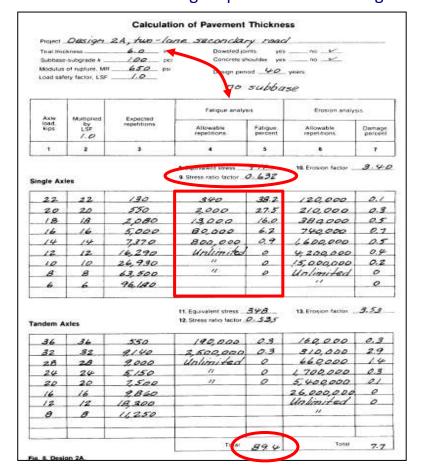

Método da PCA

- Os critérios de erosão do método PCA influenciam diretamente a espessura.
- O consumo não deve exceder 100%.

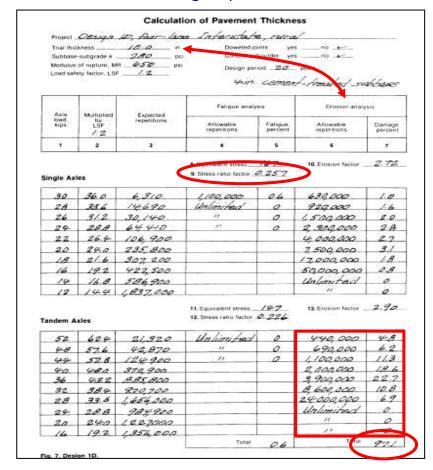
O "critério de erosão" do método PCA não deve ser confundido com o conceito de erosão de materiais.

O "Erosion factor" depende da espessura da placa e do suporte de base. Quanto mais espessura e melhor a base, menor o valor.

Critérios de dimensionamento



Os dois critérios do método devem sempre ser considerados


Baixo tráfego

Dimensionamento regido por critérios de fadiga

Alto tráfego

Dimensionamento regido pelos critérios de erosão

Método "Pavement Designer"

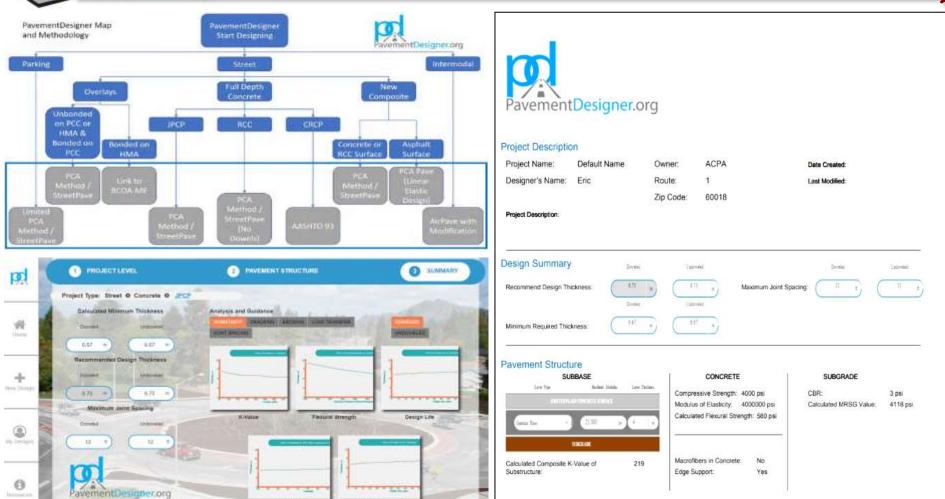
Novo método de dimensionamento para ruas, estacionamentos e pavimentos intermodais.

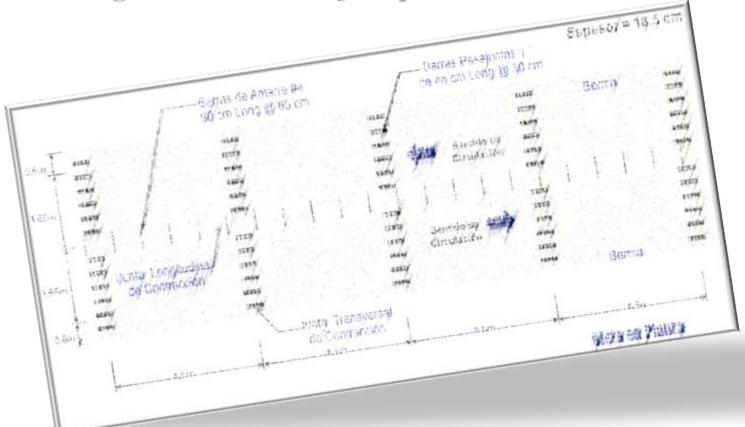
Desenvolvido em conjunto por:

Guias e ferramentas para o dimensionamento de:

10

- Pavimento de concreto convencional
- Pavimento de concreto continuamente reforçado
- Placas sobrepostas de concreto
- Pavimentos compostos
- Concreto compactado con rolo
- Solo-Cimento
- Bases tratadas com cimento
- Recuperação a profundidade total





Esquema de dimensionamento

% Make Croosell

Algumas considerações para o dimensionamento

Controle de esforços e deformações

Esforços dependem de muitos fatores:

Internos

- ✓ Espessura da placa de concreto
- ✓ Largura da placa
- ✓ Apoio lateral
- ✓ Resistência do concreto
- ✓ Transferência de carga
- ✓ Ligação entre placas
- ✓ Presença ou não de reforço interno
- **√** ...

Externos

- ✓ Tipo e magnitude da carga
- ✓ Localização da carga na placa
- ✓ Distância entre a aplicação de carga e a borda
- ✓ Freqüência
- **√** ...

Empenamento térmico em placas de concreto

Movimentos causados por diferenciais térmicos entre topo e fundo de placas de concreto. Podem variar durante o mesmo dia.

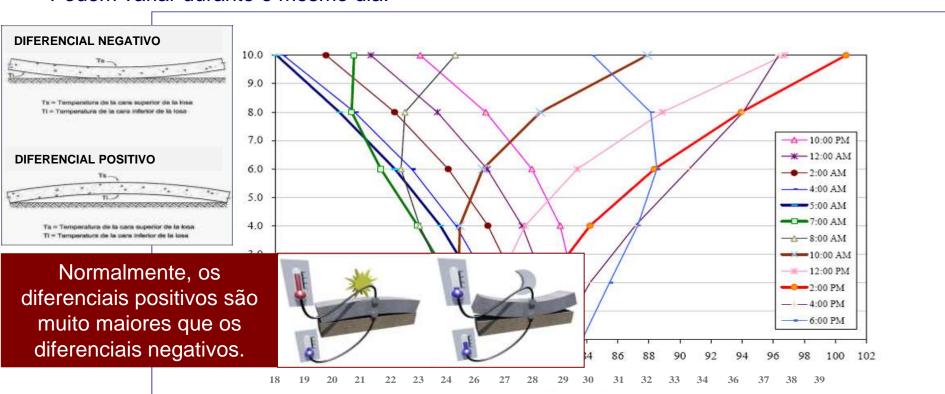


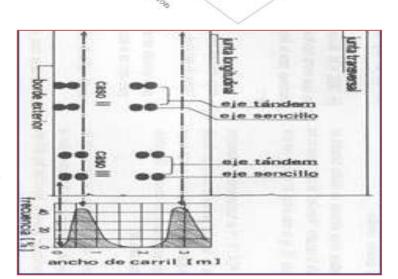
Figure 3.4.13. Example of temperature profile through a 10 in PCC slab for a typical spring day.

Diferenciais negativos

Não é de grande magnitude, mas pode ocorrer em áreas muito frias.

Um grande diferencial negativo pode gerar empenamento excessivo e fisuras, especialmente nos cantos das placas.

- Apenas empenamento: de baixo para cima.
- Empenamento com tráfego: de cima para baixo.



Capacidade da estrutura do pavimento para controlar deflexoes nas bordas da placa.

A largura da placa é um fator que afeta diretamente os níveis de esforços e deformações. Os esforços mais críticos no pavimento de concreto estão na borda livre e também dependerão de:

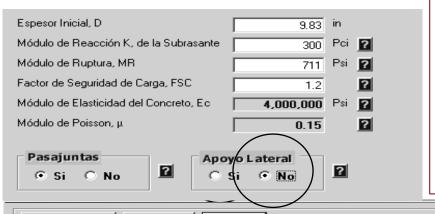
- Espessura
- Comprimento
- Tipo concreto
- Tipo de suporte

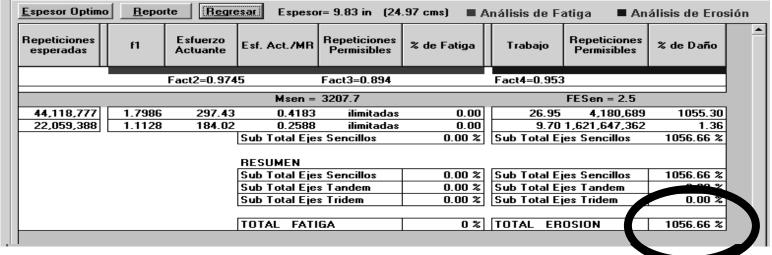
Idealmente, as cargas do veículo devem ser aplicadas o mais longe possível da borda da placa. A largura da placa torna-se um critério de dimensionamento muito importante.

PAVIMENTOS

Apoio lateral

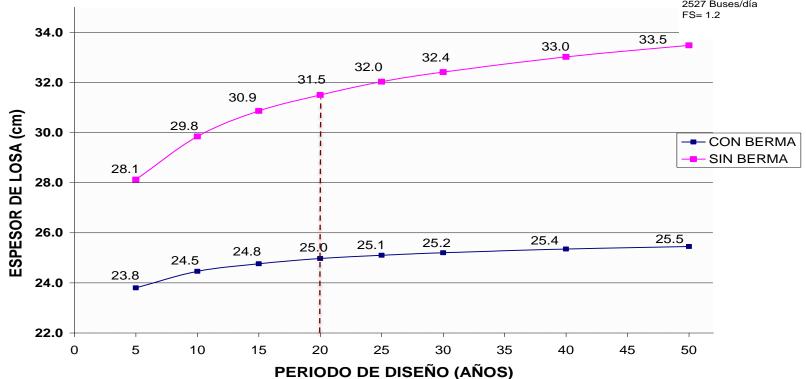
Rigid Pavement Design - Based on AASHTO Supplemental Guide II. Design Pavement Type, Joint Spacing (L) Service ability **● JPCP** Initial Serviceability, P1: Joint Spacing: Terminal Service ability, P2: **GJRCP** 133 ft **PCC Properties UCRCP** 28-day Mean Modulus of Rupture, (Sk) 614 psi JPCP 4.144.000 psi Elastic Modulus of Slab, Ea: 159.6 in Poisson's Ratio for Concrete, m: 015 Effective Joint Spacing: Edge Support Table 14 Base Properties Conventional 12-ft wide traffic lane 800.000 psi Elastic Modulus of Base, B: Design Thickness of Base, His 10,0 in Conventional 12-ft wide traffic lane + tied PCC Slab-Base Friction Factor, f: 2-ft widened slab w/conventional 12-ft traffic lane Reliability and Standard Deviation Reliability Level (R): 950 Edge Support Factor. Overall Standard Deviation, So: Sensitivity Analysis Slab Climatic Properties Table 15 Slab Thickness used for Thickness 10,2 ILE in Sensitivity Mean Annual Wind Speed, WIND: Sensitivity Analysis: mph Mean Annual Air Temperature, TEMP: 49,2 Mean Annual Precipitation, PRECIP: 333 Modulus of Rupture C Elastic Modulus (Slab) Subgrade k-Value Tastic Modulus (Base) U Base Thickness Calculate Seasonal k-Value 165 psi/in ₩-Value Joint Spacing Design FSALs Standard Deviation CReliability Calculate Traffic ZL9 million Calculated Slab Thickness for Above Inputs: 11,03 in Calculate FaultingCheck





Efeito do apoio lateral no "critério de erosão" do método da PCA

- O Apoio lateral reduz as tensões nas bordas das placas.
- Ao eliminar o apoio lateral, os esforços de borda são consideravelmente aumentados, gerando maior consumo de "erosão". Para controlar este aumento de esforços, a espessura da placa deve ser aumentada.



Efeito do apoio lateral na espessura da placa

Sim. O concreto deve ser dimensionado

Especificação por tração na flexão.

- Entre 4,2 e 5,5 MPa. Geralmente 4.5.
- Uso de agregados com características especiais:
 - Triturado.

Controle de partículas planas e alongadas.

6% Air 11% Portland Cement 41% Gravel or Crushed Stone (Coarse Aggregate) 26% Sand (Fine Aggregate) 16% Water

Dosadora ou misturadora ?

E o transporte também

O concreto é geralmente transportado em caminhão betoneira

No início dos PC, a modulação era diferente

Controlar esforços e deformações.

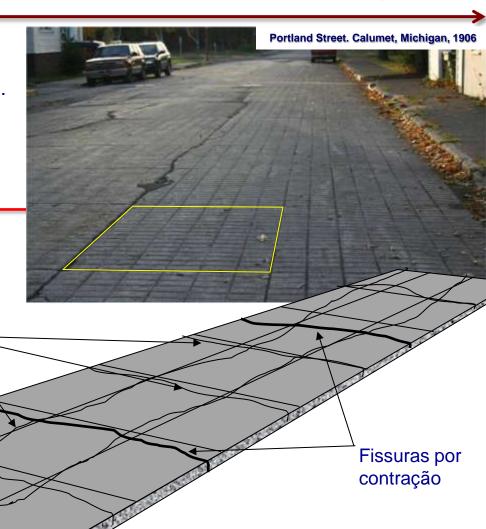
Começou em 1891 com o "tabuleiro de xadrez".

No final do século XIX, começaram a construir sem juntas. Fissuras devido a contração, diferenciais térmicos e cargas.

Depois de 1913, começaram a cortar as juntas longitudinais e transversais.

Ter em conta o tipo de base:

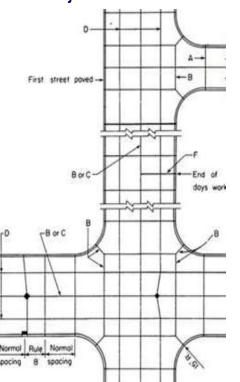
Granulares: Até 25 vezes a espessura
 Rigidas: Até 20 vezes a espessura


Relação entre comprimento e largura.

Geralmente é Maximo 1,4.

Em alguns países é de 1,25.

Elementos fixos.

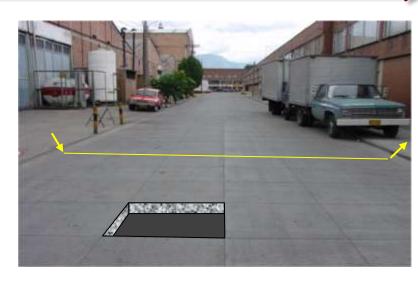

Continuidade.

Variáveis que devem ser consideradas na modulação

- Determinar o comprimento máximo da placa.
- Fator de esbeltez (comprimento / largura).
- Modulações ajustadas a elementos fixos
- Continuidade das juntas transversais e longitudinais.
 As juntas devem entrar e sair.

Bases granulares


L, a < 25 x h


Bases rígidas

L, a < 20 x h

Fator de esbeltez

$$\frac{L}{a}$$
 < 1,40

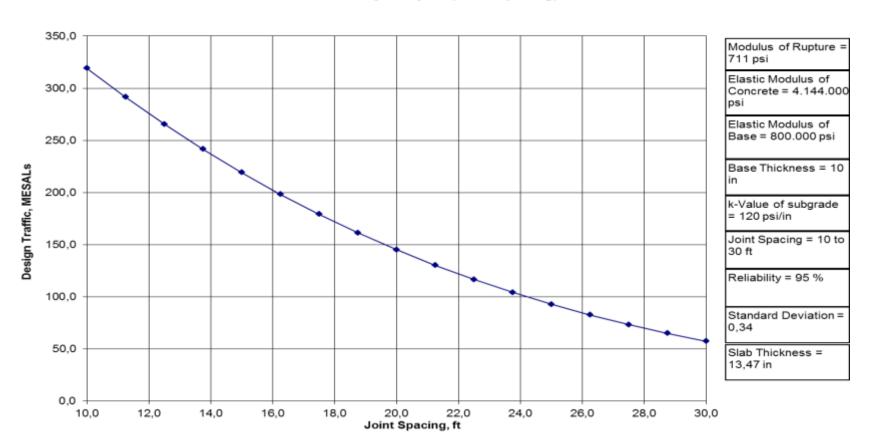
Radio Relativo de Rigidez

$$l = \sqrt[4]{\frac{E \times h^3}{12 \times (1 - \mu^2) \times k}}$$

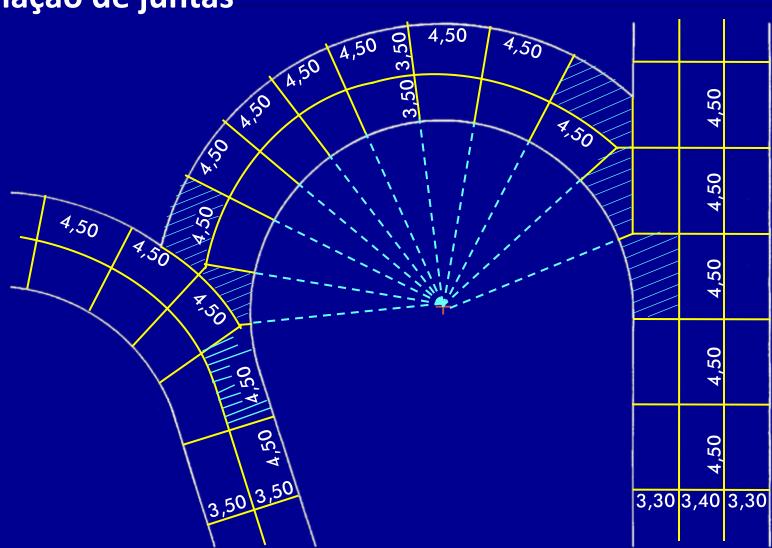
$$L, a < 5.5 \times l$$

l = Radio relativo de Rigidez de la losa

E = Modulo de elasticidad del concreto


h = Espesor de la losa

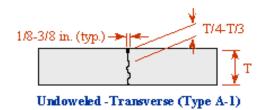
 μ = Modulo de Poisson del concreto según ASTM μ =0,24

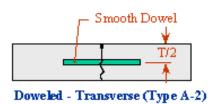

k = Modulo de reacción de la subrasante

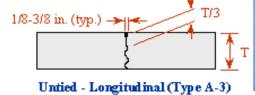
PAVIMENTOS Efeito do tamanho da placa na capacidade de suportar eixos

Sensitivity Analysis (Joint Spacing)

Modulação de juntas

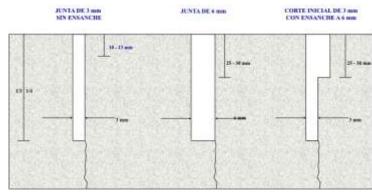





Juntas de retração

São usadas para modular o pavimento e controlar os esforços e deformações das placas.

As juntas de retração têm um detalhe especial de corte e geralmente chegam a 1/3 da espessura.

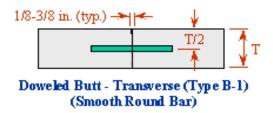


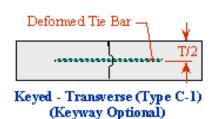
Tied - Longitudinal (Type A-4)

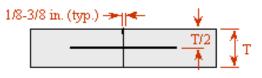
Note: T = Thickness of Concrete Slab

LONGITUDINAIS

TRANSVERSAIS




Juntas de construção

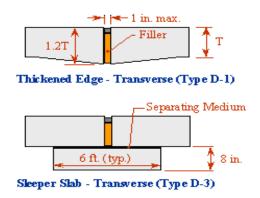

São as juntas transversais de terminação de colocação.

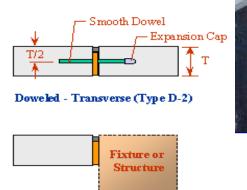
As juntas longitudinais de construção normalmente coincidem com as juntas de construção laterais por trilhos e podem conter barras de ligação ou de transferência.

Tied Butt - Longitudinal (Type B-2) (Deformed Tiebar)

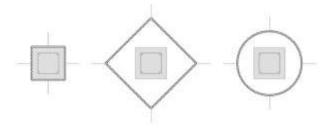
Keyed - Longitudinal (Type C-2) (Deformed Tie Bar Optional)

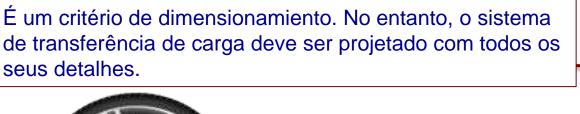
Note: T = Thickness of Concrete Slab





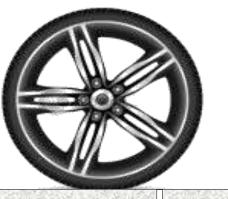
São usadas nas juntas entre dois pavimentos de concreto diferentes, nas juntas entre os elementos fixos, como poços, ou onde não é desejado que haja interação entre duas placas adjacentes.

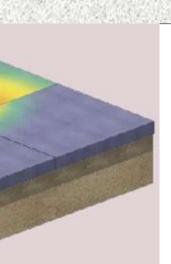

As juntas de expansão vão sempre até o fundo da junta e, em casos especiais, podem ter barras de transferência.

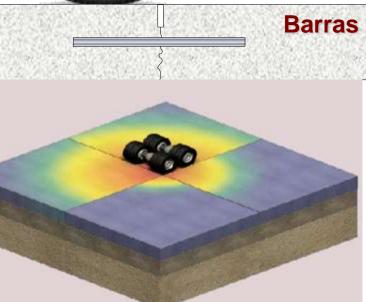


Undoweled - Longitudinal (Type D-4)

Note: T = Thickness of Concrete Slab





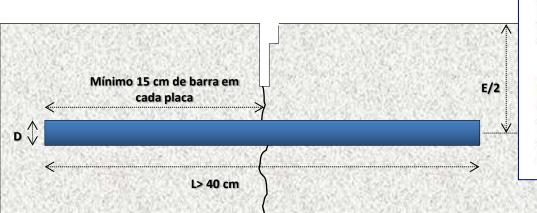

Os sistemas mais comuns são:

- Agregados
 - Barras

Agregados

Características das barras de transferência

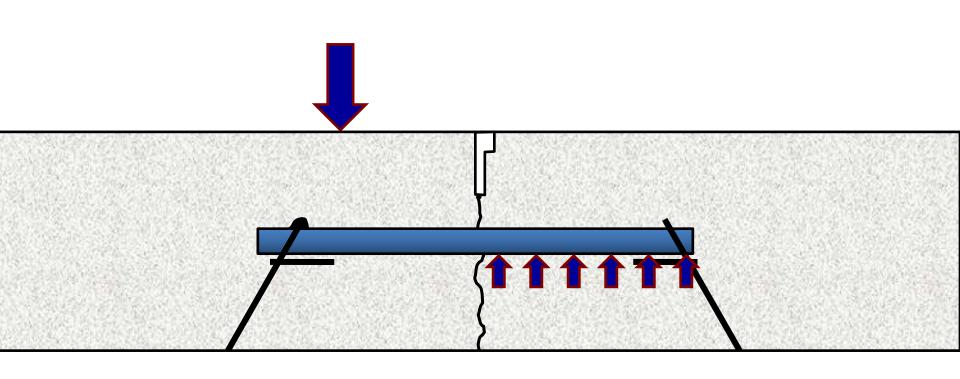
- ✓ Mínimo 15 cm de barra em cada placa
- ✓ Antiaderente em todo a barra
- ✓ Controle de tolerâncias
 - ✓ Frente: máximo 50 mm
 - ✓ Vertical: mínimo 12 mm abaixo do corte
 - ✓ Rotação: máximo 9 mm entre as extremidades


- Restringir/Permitir
 - Restringir o movimiento vertical
 - Permitir o movimento horizontal

USA - COLÔMBIA

Espessura da placa	Diâmetro da barra
Menos que 15 cm	Pode não ser necessário Depende do dimensionamento
Entre 15 e 20 cm	1 in (depende del diseño)
Entre 20 e 25 cm	1 1/4 in
Maior que 25 cm	1 1/2 in

BRASIL IP-07/2004


Espessura da placa	Diâmetro da barra
Menos que 20 cm	20 mm (3/4 in)
Entre 20 e 25 cm	25 mm (1 in)
Maior que 25 cm	32 mm (1 1/4 in)

Movimentos das barras

Movimentos das barras

Controle de barras de transferência

✓ Barra de transferência

 Aço, redondo, liso. Em linha reta, corte sem rebarbas nas pontas

✓ Dimensões definidas no dimensionamento

- Diâmetro
- Comprimento
- Resistência mínima de 280 MPa (2800 kg / cm2).
- Espaçamento barra (geralmente 30 cm)
- Primeira e última separação de barras (15 cm)

✓ Localização e características

- Na metade da espessura
- Paralelo ao eixo longitudinal
- Paralelos entre barras
- Extremidades alinhadas
- Evitar conflito entre transferência e ligação
- Não devem ter imperfeições ou deformações que restrinjam seu movimento dentro do concreto.
- As barras devem ser levemente engraxadas em todo o seu comprimento.
 - Não é recomendado engraxar apenas a metade da barra

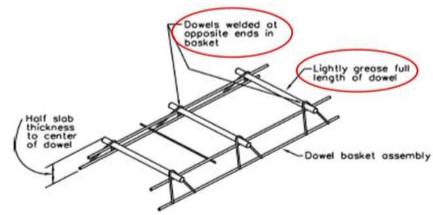
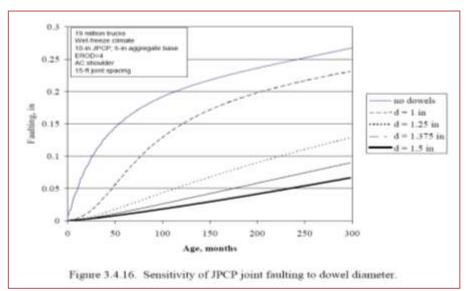
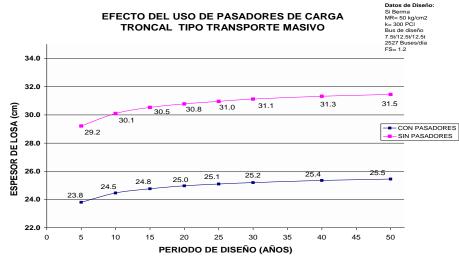


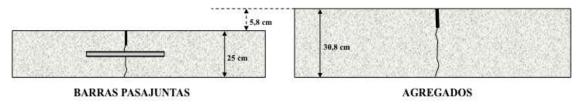
Fig. 5.9—Dowel basket assembly.

ACI 360 R-06 - Design of Slabs on Ground



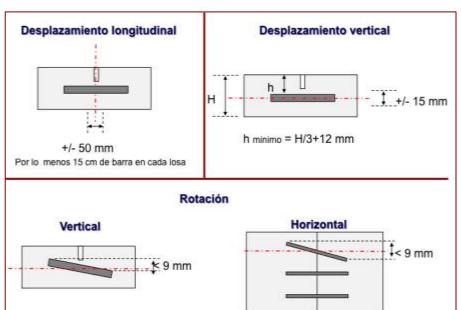
- Barras com corte liso e sem rebarbas.
- Centro da cesta alinhado com a futura junta.
- Que não há conflito entre transferência e ligação.
 - Localização correta
 - No meio da espessura
 - Paralelas entre barras
 - Extremidades alinhadas
- Pelo menos 15 cm de barra em cada placa
- Âncoras nas duas seções da cesta em direção ao concreto
- ✓ Soldagem alternativa
- Engraxe total de cada barra
- Reforços completamente cortados




Análise de sensibilidade de transferência de carga

Análise de sensibilidade da diferença entre placas nas juntas, dependendo do diâmetro da barra de transferência

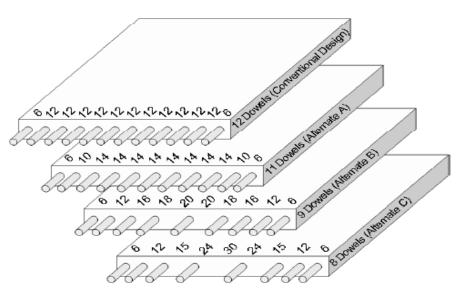
Espessuras equivalentes com e sem transferência por barras Sistema BRT

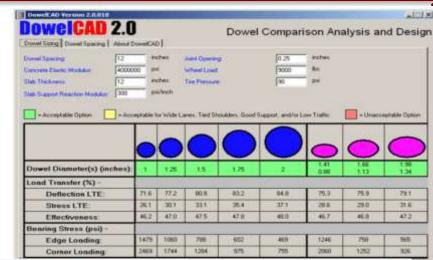


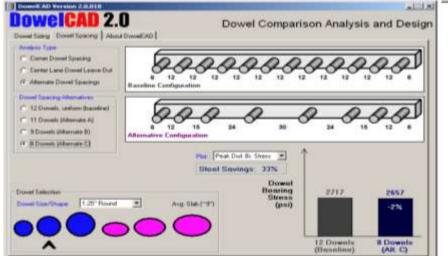
Tolerâncias na localização final das barras

Durante a construção, as barras de transferência podem ser movidas do local estabelecido no dimensionamento. Deve-se verificar que os movimentos são menores que os estabelecidos nas tolerâncias:

Existem ensaios não destrutivos que permitem verificar a localização exata das barras de transferência, após a construção do pavimento.


Opção para o dimensionamento do sistema de transferência


Dowel comparison analysis and design


ACPA - The Transtec Group - American Highway Technology

Módulo 1 - Análise de diâmetro

Módulo 2 - Análise da separação entre barras

A propósito. Não esqueça a drenagem

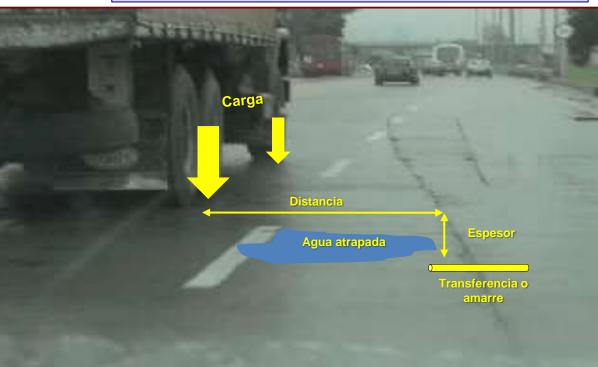
Objetivo: Reduzir ou eliminar a água da estrutura do pavimento.

É um tema de design.

- Estudo hidráulico
- Estruturas de drenagem.

3 coisas para ter um pavimento durável:

- 1. Drenagem
- 2. Drenagem
- 3. Drenagem

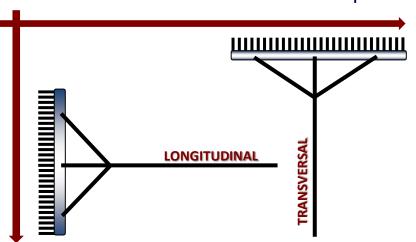


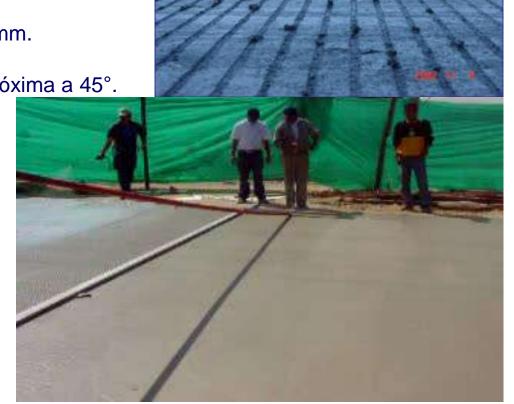
Bombeamento

Filtração, aprisionamento e expulsão de água, por aplicação de cargas.

Fatores para o bombeamento:

- 1. Água
- 2. Cargas
- 3. Material de base
- 4. Magnitude da carga
- 5. Distância de carga ao borde
- 6. Transferência/ligação





Até mesmo a textura macro deve ser dimensionada

Ele gera ranhuras para aumentar o atrito e facilitar a evacuação de águas superficiais. (Segurança)

- Pode ser transversal ou longitudinal.
- O mais usado é o de metal com cerdas.
- Separação entre cerdas entre 12,5 e 25 mm.
- A profundidade entre 3 e 6 mm.
- Deve ser passado com uma inclinação próxima a 45°.
- O acabamento n\u00e3o deve se sobrepor.

A direção do acabamento deve ser especificada

Transversal

- Pode ser manual ou automático
- Maior atrito
- ✓ Maior eficiência na evacuação de água
- ✓ Mais barulho

Longitudinal

- ✓ Só pode ser automático
- ✓ Menos fricção
- ✓ Menos eficiência na evacuação de água
- ✓ Baixo ruído

