

20 a 22 de Junho de 2016 - São Paulo/SP

Plantas de Cimento Engenharia Conceitual

Futuro Tecnológico & Sustentável

PALESTRANTE: Arnaldo Andrade

Realização

SUMÁRIO

- Modelagem da mina (paradigma do óbvio e fundamental)
- Comparativo de tecnologias de britagem
- Pré-homo: se necessário, qual a melhor solução
- Analisador em tempo real para a mina e moagem de cru
- Comparativo de tecnologias de moagem de cru
- Pré-aquecedor de 5 ou 6 estágios?
- Forno de 3 ou 2 apoios?
- Comparativo de tecnologias de resfriadores de clinquer
- Adotar 1 ou 2 filtros de processos para a linha quente?
- Comparativo de tecnologias de moagens de cimento
- Adoção do sistema WHR
- Água (torre de arrefecimento e as limitações do VRM)
- Principais reflexões sobre o conceito tecnológico do futuro

MODELAGEM DA MINA PARADIGMA DO ÓBVIO E FUNDAMENTAL

- Um dos principais itens para execução de uma boa engenharia conceitual é o profundo conhecimento da mina
- Influencia no dimensionamento da planta, portanto no Capex
- Influencia na regularidade industrial e na qualidade
- Influencia na produtividade
- Influencia nos custos de produção
- Influencia na vida útil da mina
- Etc.....
- Mas..... Há muitos poucos bons exemplos no Brasil e no mundo em que a engenharia conceitual foi adequadamente municiada. O pior, descarte de boas jazidas e/ou a partida da planta com enormes problemas de matéria prima

BRITAGEM – TECNOLOGIAS DISPONIVEIS

	MANDIBULA	GIRATÓRIO	IMPACTO/MARTELO (EV)	CÔNICOS		
DESENHO ESQUEMATICO						
Grau de redução	1:4 a 1:6	1:7 a 1:10	1:10 a 1:50	1:4 a 1:10		
Consumo kWh/t	0,10 a 0,25	0,15 a 0,30	0,9 a 1,10	0,4 a 0,55		
Desgaste	médio	baixo	alto	baixo		
Freq. De manutenção	média	baixa	alta	baixa		
Produção t/h (máx.)	1000	3000	2000	800		
Produto 80% menor	150 mm	100 mm	25 mm	19 mm		
faixa granulometria	estreita	estreita	dispersa	estreita		
% finos	média	baixo	alta	baixa		
Forma produto	muito lamelar	lamelar	cubica	pouco lamelar		
Tam. Max. Alimentação	< 1500 mm	< 1500 mm	< 2000 mm	< 400		
Dureza material	alta	alta	média	alta		
abrasividade	alta	alta	baixa	alta		
umidade máxima	< 10%	< 8 %	argila úmida	< 5 %		
% de argila na mistura	< 10	< 8	< 15	menor possível		

BRITAGEM - TECNOLOGIAS DISPONIVEIS

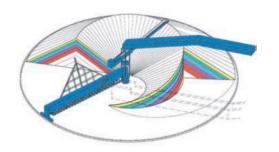
	MARTELOS	IMPACTO	ROLOS	BARMAC	
DESENHO ESQUEMATICO					
Grau de redução	1:30 a 1:50	1:40 a 1:50	1:3 a 1:5	1:2 a 1:3	
Consumo kWh/t	1 a 4	1 a 1,5	0,98 a 2,1	1a2	
Desgaste	alto	alto	médio	baixo	
Freq. De manutenção	alta	alta	media	baixa	
Produção t/h (máx.)	150	1000	1000	5 a 600	
Produto 80% menor	3 mm	40 mm	10 mm	19 mm	
faixa granulometria	dispersa	dispersa	estreita	dispersa	
% finos	alta	alta	muito alta	alta	
Forma produto	cubica	cubica	lamelar	cubico	
Tam. Max. Alimentação	100 mm	1000 mm	25 mm	75 mm	
Dureza material	media	media a baixa	media a alta	indiferente	
abrasividade	baixa	baixa	media	indiferente	
umidade máxima	2%	não afeta	não afeta	8%	
% de argila na mistura	menor possível	menor possível	possível uso	possível uso	

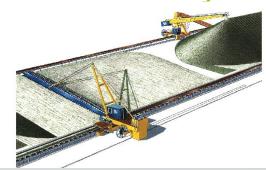
BRITAGEM – TECNOLOGIAS DISPONIVEIS

- O britador de impacto, principalmente o de martelos, é o mais amplamente utilizado na indústria cimenteira mundial por sua alta capacidade de redução de tamanho, alta flexibilidade para uso de calcários contaminados com argila, admite maior umidade da mistura, com boa confiabilidade e baixo CAPEX.
- O britador giratório, mandatoriamente acompanhado de uma britagem secundária ou terciária, faz sentido apenas para os casos de alta contaminação com sílica livre no material. Esta solução normalmente leva a um Capex mais elevado.
- O britador de mandíbula também mandatoriamente acompanhado de uma britagem secundária ou terciária pode ser aplicado em ambos as casos acima, mas com um Capex também maior, se comparado ao britador de impacto e limitações de capacidade máxima.

PRÉ-HOMO SE NECESSÁRIO QUAL É A MELHOR SOLUÇÃO

- Se há um bom conhecimento da mina
- Se o material tem baixa variação
- Se é adotado o analisador em tempo real (RTA)
- Há de se questionar a necessidade de uma pré-homo convencional. Provavelmente, um estoque pulmão de matérias primas.
- No caso de se optar pela pré-homo, qual seria a opção mais indicada?
- Com a utilização do RTA, a adoção de uma pré-homo com a mistura calcários e argilas pode ser a alternativa mais adequada



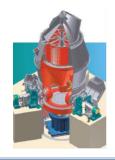


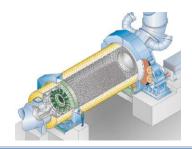
PRÉ-HOMO SE NECESSÁRIO QUAL É A MELHOR SOLUÇÃO

	CIRCULAR	LONGITUDINAL
VANTAGENS	Ocupa menor área. Menor Capex. Não tem efeito cabeça. Confinamento da poeira. Emite menos ruído. Só possui correia de descarga e menor. A diferença de preço paga a cobertura.	Maiores capacidades, maior flexibilidade para expansão e estocagem de outros materiais (ex.: calcário para cimento e moagem de cru) Britagem e empilhamento trabalham independentes da moagem de cru. Manutenção na retomadora não causa parada do empilhador. Possibilidade o uso de material pegajoso. Não exige cobertura em algumas aplicações.
DES VANTAGENS	Manutenção da retomadora pode gerar parada do empilhador e vice-versa. Parada do moinho de cru pode causar parada do empilhamento. Impossibilita estocagem de outros materiais com compartilhamento do empilhador. Menor flexibilidade de expansão. Exige cobertura. Menor percentual de material pegajoso	Ocupa maior área e é mais caro. Possui correia de carga e outra para descarga. Maior gasto com manutenção Possui um transportador longo a mais (Carga). Possui efeito cabeça Custo de cobertura elevado

ANALISADOR EM TEMPO REAL MINA E MOAGEM DE CRU

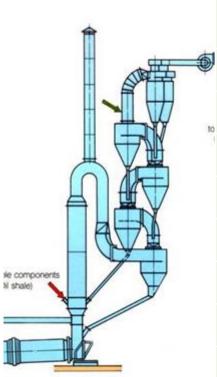
- O Capex tem se tornado mais competitivo
- Melhoria da assistência técnica
- No caso da mina, propicia o aumento da vida útil e da regularidade da qualidade
- Pode propiciar a economia de investimento em pré-homo
- Aumenta a vida útil da refratário
- Aumenta a produtividade do forno
- Melhor regularidade industrial da qualidade do clinquer
- Redução de mão de obra
- Etc...
- Tratam-se de dois itens altamente recomendados para plantas atuais e futuras

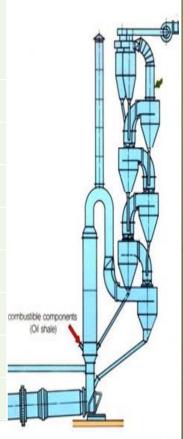




COMPARATIVO DE TECNOLOGIAS MOAGEM DE CRU

	VANTAGENS	DESVANTAGENS
ROLLER PRESS	Baixo consumo de energia elétrica. Não consome água. Fácil de operar Baixo custo de Manutenção	Capacidade de secagem reduzida. Exige alimentação abaixo de 50 mm Máquina pouco conhecida no Brasil.
VRM	Baixo consumo de energia elétrica Alta capacidade de secagem Alta confiabilidade, tecnologia consolidada Admite tamanho de alimentação de até 100 mm Baixo custo de manutenção Maior flexibilidade de produtos	Alto consumo de água. Complexidade de operação média – vibração
HOROMILL	Baixo consumo de energia elétrica. Não consome água Admite tamanho de alimentação de até 100 mm	Baixa confiabilidade, baixa vida útil. Capacidade de secagem limitada Nunca foi fabricado no tamanho necessário. Complexidade de operação média/alta– vibração
BOLAS	Alta capacidade de secagem Alta confiabilidade Fácil de operar	Alto consumo de Energia Elétrica Exige alimentação abaixo de 40 mm Custo de manutenção médio-alto.




PRÉAQUECEDOR DE 5 OU 6 ESTÁGIOS?

5 Estágios

	Forno 5000 tpd	5 estágios	6 estágios
	Altura da torre	normal	> 15m
to	Custo equipamento	normal	> 12%
	Temperatura de saida gás (°C)	280 - 320	250 - 290
	Diferencial de pressão (delta P)	normal	> 5/10%
	Consumo EE	normal	> 5/10%
	Capex refratário	normal	> 5/10%
	Consumo térmico (Kcal/Kg)	normal	< 8 - 12
	Obra civil	normal	> 15%

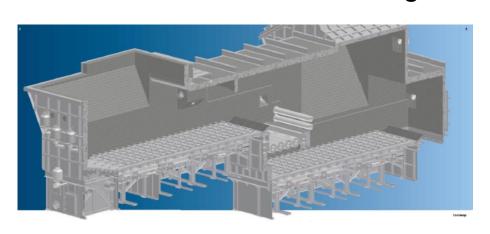
6 Estágios

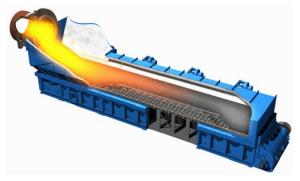
FORNO DE 3 OU 2 APOIOS?

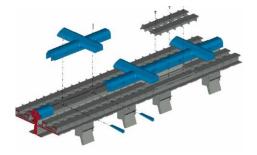
3 BASES

2 BASES

Forno 5000 tpd	3 bases	2 bases			
Diâmetro (m)	4,75	5			
Comprimento (m)	~74	~60			
Inclinação (°)	4	3,5			
Rotação (RPM)	até 4	até 5			
Tempo de partida	normal	< 10/20%			
Vida útil do refratário	normal	> 5/10%			
Capex refratário	normal	< 12%			
Peso total	normal	< 5/10%			
Obra civil	normal	< 20%			
Custo dos equipmentos	normal	normal			
Custo de manutenção	normal	< 10%			
Complexidade de manutenção	alta	média			
Tecnologia	convencional	moderna			
Coprocessamento	Flexivel(ex.:pneu inteiro)	restrições			
Qualidade do clinquer	normal	cristais menores			
Perdas térmicas por radiação no casco	normal	< 10 - 15%			

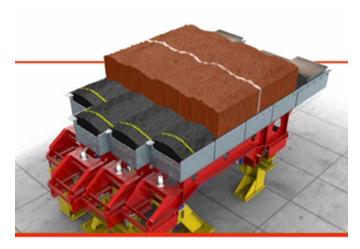


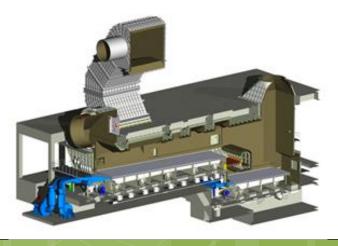

TECNOLOGIAS DE RESFRIADORES DE CLINQUER


POLYTRAK - Tecnologia POLYSIUS

CROSS BAR - Tecnologia FLS





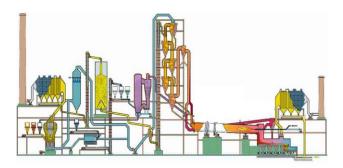

TECNOLOGIAS DE RESFRIADORES DE CLINQUER

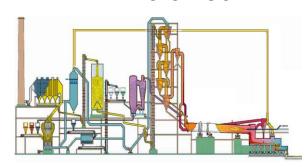
ETA - COOLER Tecnologia CPAG / KHD

IKN - Tecnologia IKN

TECNOLOGIAS DE RESFRIADORES DE CLINQUER EXEMPLO DOS QUESITOS AVALIADOS

Criterios		TECNOLOGIAS RESFRIADORES								
		POLYTRAC		CROSS - BAR		ETA - COOLER		IKN		
ITEM	DESCRIÇÂO	Peso	nota	PESOxNOTA	nota	PESOxNOTA	nota	PESOxNOTA	nota	PESOxNOTA
1	Eficiencia termica	25	4	100	3	75	5	125	3	75
2	Confiabilidade Tecnol.	20	3	60	5	100	5	100	5	100
3	Consumo EE	15	2	30	3	45	4	60	5	75
4	tecnologia consolidada	7	3	21	4	28	4	28	5	35
5	Complexidade operação	7	3	21	3	21	5	35	4	28
6	Complexidade manut.	5	3	15	3	15	4	20	4	20
7	Custo manutenção	4	4	16	4	16	4	16	4	16
8	Desgaste	7	5	35	4	28	3	21	1	7
			3,31	298	3,64	328	4,50	405	3,96	356
ordem de escolha		4		3		1		2		



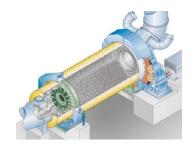


ADOTAR 1 OU 2 FILTROS DE PROCESSOS LINHA QUENTE

Dois Filtros

Filtro Único

Forno 5000 tpd	Filtro único	Forno + cru	Resfriador	
Qauntidade de mangas	•		В	
Lay out	Simples	Maior espaço		
Ponto de orvalho ácido	> Proteção	< Proteção	NA	
Temperatura de trabalho	> 150	> 150	> 120	
Operação do forno	> controle	normal	normal	
Custo da manga	Custo da manga Alto		Médio	
Custo do equipamento	Custo do equipamento < A + B		В	
Obra civil	Obra civil < A + B		В	
Meio ambiente	1 chaminé	2 chaminés		
Gás quente para secagem	Gás quente para secagem A + B		В	
Tempo de manutenção	Tempo de manutenção normal		normal	
Ar falso para resfriamento	< vazão			



COMPARATIVO DE TECNOLOGIAS MOAGEM DE CIMENTO

Criterios		TECNOLOGIAS MOAGEM CIMENTO								
	011001103		Prensa Rolos		Horizontal bolas		Vertical Rolos		Horomill	
ITEM	DESCRIÇÂO	Peso	nota	PESOxNOTA	nota	PESOxNOTA	nota	PESOxNOTA	nota	PESOxNOTA
1	Consumo Energ. Eletrica	20	5	100	1	20	4	80	5	100
2	Confiabilidade Tecnol.	15	4	60	5	75	5	75	2	30
3	Consumo de agua	8	5	40	3	24	2	16	5	40
4	Custo manutenção	7	5	35	4	28	4	28	3	21
5	tecnologia consolidada	7	3	21	4	28	5	35	1	7
6	Complexidade manut.	5	5	25	5	25	4	20	2	10
7	Complexidade operação	5	5	25	5	25	3	15	4	20
8	capacidade de secagem	3	3	9	3	9	4	12	3	9
	-		4,50	315	3,34	234	4,01	281	3,39	237
ordem de escolha			1 4 2 3				3			

ADOÇÃO DO SISTEMA DE WHR (WASTE HEAT RECOVERY)

- Difícil viabilização em fornos de clinquer com capacidade inferior a 3.000 tpd
- Traz o aumento na necessidade de água de "make up"
- É uma alternativa para regiões com elevada frequência de descontinuidade de energia elétrica
- Possibilidade de uso de calor adicional para ampliar a capacidade de cogeração e descontratar no horário de ponta
- Com os acordos firmados ao final de COP de Paris, poderá tornar-se mais atrativo
- O marco regulatório para o sistema elétrico adotado pelos últimos governos no Brasil potencializou a baixa atratividade do sistema

ÁGUA EM PLANTAS DE CIMENTO

- Tornou-se com certeza um dos principais itens para uma planta sustentável de cimento
- Já redundou na eliminação das torres de arrefecimento
- Deverá forçar uma adequação da tecnologia dos VRM's, ou mesmo de serem substituídos em futuros projetos, face ao alto consumo de água no processo produtivo
- Plantas com um consumo de água de reposição ("make up") maior que 20 litros/ t de cimento, pode-se considerar não estar utilizando as melhores tecnologias ou as tecnologias mais sustentáveis

PRINCIPAIS REFLEXÕES SOBRE O CONCEITO TECNOLÓGICO DO FUTURO

- Baixo consumo de água
- Modelagem da mina X necessidade de pré-homo
- Uso de 2 RTA's
- Crescimento do RP e Horomill para moagens de cru (??)
- Tendência para a torre ciclones de 5 estágios
- Forno 2 apoios
- Um filtro de processos
- Resfriador de clinquer tipo ETA Cooler
- Tendência de crescimento do RP para cimentos com blaines até 4000 cm2/g

PRINCIPAIS REFLEXÕES SOBRE O CONCEITO TECNOLÓGICO DO FUTURO (ITENS AVALIADOS, MAS NÃO ABORDADOS NESTA APRESENTAÇÃO)

- O paradigma dos maçaricos
- Comparativo de calcinadores
- Comparativo ILC e SLC
- Moagem de combustíveis sólidos
- Filtro de processo de alta, média e baixa pressão
- Acionamento pelos rolos ou por coroa/pinhão
- Moagem em separado do materiais cimentícios
- Controle em tempo real da cal livre
- Sistemas de amostragem automática
- Expert system
- Sistemas supervisórios com relatórios de controle de produção e qualidade
- Sistema Rietvelt e o controle do C3S M1 e M3
- Manutenção preditiva por monitoramento "on line" de vibração
- Etc

OBRIGADO!

Gostaria de lembrar que permanecerei no stand da VERBOR durante o Congresso.

Todos são bem-vindos para maiores esclarecimentos!